Spaces:
Sleeping
Sleeping
Commit
·
9502681
1
Parent(s):
4194e16
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,63 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
import json
|
| 3 |
from google.oauth2 import service_account
|
| 4 |
from google.cloud import language_v1
|
|
|
|
| 5 |
|
| 6 |
def sample_analyze_entities(text_content):
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
# Streamlit app
|
| 11 |
st.title('Google Cloud NLP Entity Analyzer')
|
| 12 |
user_input = st.text_area("Enter text to analyze", "Your text goes here")
|
| 13 |
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
from google.oauth2 import service_account
|
| 3 |
from google.cloud import language_v1
|
| 4 |
+
import streamlit as st
|
| 5 |
|
| 6 |
def sample_analyze_entities(text_content):
|
| 7 |
+
service_account_info = json.loads(st.secrets["google_nlp"])
|
| 8 |
+
credentials = service_account.Credentials.from_service_account_info(
|
| 9 |
+
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
|
| 10 |
+
)
|
| 11 |
+
client = language_v1.LanguageServiceClient(credentials=credentials)
|
| 12 |
+
|
| 13 |
+
type_ = language_v1.Document.Type.PLAIN_TEXT
|
| 14 |
+
language = "en"
|
| 15 |
+
document = {"content": text_content, "type_": type_, "language": language}
|
| 16 |
+
encoding_type = language_v1.EncodingType.UTF8
|
| 17 |
+
|
| 18 |
+
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
|
| 19 |
+
|
| 20 |
+
# Create an empty list to hold the results
|
| 21 |
+
entities_list = []
|
| 22 |
+
|
| 23 |
+
for entity in response.entities:
|
| 24 |
+
# Create a dictionary to hold individual entity details
|
| 25 |
+
entity_details = {
|
| 26 |
+
"Name": entity.name,
|
| 27 |
+
"Type": language_v1.Entity.Type(entity.type_).name,
|
| 28 |
+
"Salience Score": entity.salience,
|
| 29 |
+
"Metadata": [],
|
| 30 |
+
"Mentions": []
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
for metadata_name, metadata_value in entity.metadata.items():
|
| 34 |
+
entity_details["Metadata"].append({metadata_name: metadata_value})
|
| 35 |
+
|
| 36 |
+
for mention in entity.mentions:
|
| 37 |
+
entity_details["Mentions"].append({
|
| 38 |
+
"Text": mention.text.content,
|
| 39 |
+
"Type": language_v1.EntityMention.Type(mention.type_).name
|
| 40 |
+
})
|
| 41 |
+
|
| 42 |
+
# Append the dictionary to the list
|
| 43 |
+
entities_list.append(entity_details)
|
| 44 |
+
|
| 45 |
+
# Use Streamlit to display the results
|
| 46 |
+
st.write("### Analyzed Entities")
|
| 47 |
+
for entity in entities_list:
|
| 48 |
+
st.write(f"**Name**: {entity['Name']}")
|
| 49 |
+
st.write(f"**Type**: {entity['Type']}")
|
| 50 |
+
st.write(f"**Salience Score**: {entity['Salience Score']}")
|
| 51 |
+
|
| 52 |
+
if entity["Metadata"]:
|
| 53 |
+
st.write("**Metadata**: ")
|
| 54 |
+
st.json(entity["Metadata"])
|
| 55 |
+
|
| 56 |
+
if entity["Mentions"]:
|
| 57 |
+
st.write("**Mentions**: ")
|
| 58 |
+
st.json(entity["Mentions"])
|
| 59 |
+
|
| 60 |
|
|
|
|
| 61 |
st.title('Google Cloud NLP Entity Analyzer')
|
| 62 |
user_input = st.text_area("Enter text to analyze", "Your text goes here")
|
| 63 |
|