import streamlit as st from google.cloud import language_v1 import os # Your existing function (replace this part with your actual code) def sample_analyze_entities(text_content): st.write("Debug: Entered sample_analyze_entities") try: client = language_v1.LanguageServiceClient() type_ = language_v1.Document.Type.PLAIN_TEXT language = "en" document = {"content": text_content, "type_": type_, "language": language} encoding_type = language_v1.EncodingType.UTF8 st.write("Debug: Making API call...") response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type}) st.write("Debug: API call completed.") for entity in response.entities: st.write(f"Entity: {entity.name}, Type: {language_v1.Entity.Type(entity.type_).name}, Salience: {entity.salience}") except Exception as e: st.write(f"Debug: An error occurred: {e}") # Streamlit UI st.title('Google Cloud NLP Entity Analyzer') user_input = st.text_area('Enter text to analyze', '') if st.button('Analyze'): st.write("Debug: Analyze button clicked") if user_input: st.write(f"Debug: User input received: {user_input}") sample_analyze_entities(user_input)