Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import os
|
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
|
|
4 |
from pypdf import PdfReader
|
5 |
from pyvis.network import Network
|
6 |
|
@@ -11,12 +13,12 @@ from knowledge_graph_maker import (
|
|
11 |
# ββ Page setup ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
12 |
st.set_page_config(page_title="Knowledge Graph (OpenRouter)", layout="wide")
|
13 |
st.title("Knowledge Graph from Text/PDF β OpenRouter")
|
14 |
-
st.caption("Builds a knowledge graph with knowledge-graph-maker via OpenRouter.
|
15 |
|
16 |
# ββ Secrets / env βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
17 |
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
|
18 |
|
19 |
-
# Preset OpenRouter models (
|
20 |
OPENROUTER_MODELS = [
|
21 |
"openai/gpt-oss-20b:free",
|
22 |
"moonshotai/kimi-k2:free",
|
@@ -24,17 +26,15 @@ OPENROUTER_MODELS = [
|
|
24 |
"google/gemma-3-27b-it:free",
|
25 |
]
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# ββ Sidebar controls βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
28 |
with st.sidebar:
|
29 |
st.subheader("Model & Generation Settings")
|
30 |
-
|
31 |
-
# Model choices
|
32 |
-
OPENROUTER_MODELS = [
|
33 |
-
"openai/gpt-oss-20b:free",
|
34 |
-
"moonshotai/kimi-k2:free",
|
35 |
-
"google/gemini-2.0-flash-exp:free",
|
36 |
-
"google/gemma-3-27b-it:free",
|
37 |
-
]
|
38 |
model_choice = st.selectbox("OpenRouter model", OPENROUTER_MODELS, index=0)
|
39 |
custom_model = st.text_input("Custom model id (optional)", placeholder="e.g. meta-llama/llama-3.1-8b-instruct")
|
40 |
|
@@ -47,14 +47,11 @@ with st.sidebar:
|
|
47 |
preset_names = list(PRESETS.keys())
|
48 |
preset = st.selectbox("Choose a preset", preset_names, index=0,
|
49 |
help=PRESETS[preset_names[0]]["desc"])
|
50 |
-
|
51 |
-
# Apply preset button updates the sliders below
|
52 |
if st.button("Apply preset"):
|
53 |
st.session_state.temperature = PRESETS[preset]["temperature"]
|
54 |
st.session_state.top_p = PRESETS[preset]["top_p"]
|
55 |
st.toast(f"Applied: {preset}", icon="β
")
|
56 |
|
57 |
-
# Sliders are bound to session state so the button can set them
|
58 |
temperature = st.slider(
|
59 |
"Temperature", 0.0, 1.0, key="temperature", step=0.05,
|
60 |
help="Lower = more deterministic; higher = more variety"
|
@@ -64,7 +61,6 @@ with st.sidebar:
|
|
64 |
help="Nucleus sampling threshold; 0.9 is a good default"
|
65 |
)
|
66 |
|
67 |
-
# Ontology controls
|
68 |
st.markdown("### Ontology (labels)")
|
69 |
labels_text = st.text_area(
|
70 |
"Comma-separated labels",
|
@@ -75,6 +71,12 @@ with st.sidebar:
|
|
75 |
"Relationships (comma-separated)",
|
76 |
value="Relation between any pair of Entities",
|
77 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
# ββ Helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
79 |
def parse_labels(text: str):
|
80 |
return [lbl.strip() for lbl in text.split(",") if lbl.strip()] or [
|
@@ -99,8 +101,79 @@ def chunk_text(text: str, chars: int = 3500) -> list[Document]:
|
|
99 |
docs.append(Document(text=chunk, metadata={"chunk_id": i // chars}))
|
100 |
return docs
|
101 |
|
102 |
-
def
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
net = Network(
|
105 |
height="700px",
|
106 |
width="100%",
|
@@ -108,21 +181,137 @@ def edges_to_pyvis(edges):
|
|
108 |
font_color="#222222",
|
109 |
notebook=False,
|
110 |
directed=False,
|
111 |
-
cdn_resources="in_line",
|
112 |
)
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
net.toggle_physics(True)
|
125 |
-
return net
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
# ββ Input tabs βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
128 |
tab_text, tab_pdf = st.tabs(["π Paste Text", "π Upload PDF"])
|
@@ -168,22 +357,40 @@ if st.button("Generate Knowledge Graph", type="primary"):
|
|
168 |
llm = OpenAIClient(model=selected_model, temperature=temperature, top_p=top_p)
|
169 |
|
170 |
gm = GraphMaker(ontology=ontology, llm_client=llm, verbose=False)
|
171 |
-
edges = gm.from_documents(docs, delay_s_between=0)
|
172 |
|
173 |
st.success(f"Graph built with {len(edges)} edges.")
|
174 |
|
175 |
-
# Show
|
176 |
df = pd.DataFrame([{
|
177 |
"node_1_label": e.node_1.label, "node_1": e.node_1.name,
|
178 |
"node_2_label": e.node_2.label, "node_2": e.node_2.name,
|
179 |
-
"relationship": e.relationship
|
180 |
} for e in edges])
|
181 |
st.dataframe(df, use_container_width=True)
|
182 |
|
183 |
-
# Render
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
st.markdown("---")
|
189 |
st.caption("Powered by knowledge-graph-maker via OpenRouter.")
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
+
from collections import Counter
|
6 |
from pypdf import PdfReader
|
7 |
from pyvis.network import Network
|
8 |
|
|
|
13 |
# ββ Page setup ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
14 |
st.set_page_config(page_title="Knowledge Graph (OpenRouter)", layout="wide")
|
15 |
st.title("Knowledge Graph from Text/PDF β OpenRouter")
|
16 |
+
st.caption("Builds a knowledge graph with knowledge-graph-maker via OpenRouter. Pick a model, choose presets, and render via PyVis or Cytoscape.js.")
|
17 |
|
18 |
# ββ Secrets / env βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
19 |
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
|
20 |
|
21 |
+
# Preset OpenRouter models (extend as needed)
|
22 |
OPENROUTER_MODELS = [
|
23 |
"openai/gpt-oss-20b:free",
|
24 |
"moonshotai/kimi-k2:free",
|
|
|
26 |
"google/gemma-3-27b-it:free",
|
27 |
]
|
28 |
|
29 |
+
# ---- Preset defaults in session state ----
|
30 |
+
if "temperature" not in st.session_state:
|
31 |
+
st.session_state.temperature = 0.1
|
32 |
+
if "top_p" not in st.session_state:
|
33 |
+
st.session_state.top_p = 0.9
|
34 |
+
|
35 |
# ββ Sidebar controls βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
36 |
with st.sidebar:
|
37 |
st.subheader("Model & Generation Settings")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
model_choice = st.selectbox("OpenRouter model", OPENROUTER_MODELS, index=0)
|
39 |
custom_model = st.text_input("Custom model id (optional)", placeholder="e.g. meta-llama/llama-3.1-8b-instruct")
|
40 |
|
|
|
47 |
preset_names = list(PRESETS.keys())
|
48 |
preset = st.selectbox("Choose a preset", preset_names, index=0,
|
49 |
help=PRESETS[preset_names[0]]["desc"])
|
|
|
|
|
50 |
if st.button("Apply preset"):
|
51 |
st.session_state.temperature = PRESETS[preset]["temperature"]
|
52 |
st.session_state.top_p = PRESETS[preset]["top_p"]
|
53 |
st.toast(f"Applied: {preset}", icon="β
")
|
54 |
|
|
|
55 |
temperature = st.slider(
|
56 |
"Temperature", 0.0, 1.0, key="temperature", step=0.05,
|
57 |
help="Lower = more deterministic; higher = more variety"
|
|
|
61 |
help="Nucleus sampling threshold; 0.9 is a good default"
|
62 |
)
|
63 |
|
|
|
64 |
st.markdown("### Ontology (labels)")
|
65 |
labels_text = st.text_area(
|
66 |
"Comma-separated labels",
|
|
|
71 |
"Relationships (comma-separated)",
|
72 |
value="Relation between any pair of Entities",
|
73 |
)
|
74 |
+
|
75 |
+
st.markdown("### Visualization")
|
76 |
+
renderer = st.radio("Renderer", ["PyVis (interactive)", "Cytoscape.js (beta)"], index=0)
|
77 |
+
label_mode = st.radio("Edge labels", ["Always visible", "Tooltip only"], index=0)
|
78 |
+
show_legend = st.checkbox("Show color legend", value=True)
|
79 |
+
|
80 |
# ββ Helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
81 |
def parse_labels(text: str):
|
82 |
return [lbl.strip() for lbl in text.split(",") if lbl.strip()] or [
|
|
|
101 |
docs.append(Document(text=chunk, metadata={"chunk_id": i // chars}))
|
102 |
return docs
|
103 |
|
104 |
+
def edges_to_rdf(edges):
|
105 |
+
"""Convert knowledge-graph-maker edges to RDF-like triples."""
|
106 |
+
triples = []
|
107 |
+
for e in edges:
|
108 |
+
s = (e.node_1.name or "").strip()
|
109 |
+
p = (e.relationship or "").strip() or "related_to"
|
110 |
+
o = (e.node_2.name or "").strip()
|
111 |
+
if s and o:
|
112 |
+
triples.append({"subject": s, "predicate": p, "object": o})
|
113 |
+
return triples
|
114 |
+
|
115 |
+
def count_relation_frequency(triples):
|
116 |
+
"""Return (freq_triplet, freq_predicate)."""
|
117 |
+
freq_triplet = Counter((t["subject"], t["predicate"], t["object"]) for t in triples)
|
118 |
+
freq_predicate = Counter(t["predicate"] for t in triples)
|
119 |
+
return freq_triplet, freq_predicate
|
120 |
+
|
121 |
+
# Color bins for predicate frequency
|
122 |
+
COLOR_BINS = [
|
123 |
+
(8, "#2F3B52", "freq β₯ 8"),
|
124 |
+
(5, "#4E6E9E", "5β7"),
|
125 |
+
(3, "#7FA6F8", "3β4"),
|
126 |
+
(1, "#BFD3FF", "1β2"),
|
127 |
+
]
|
128 |
+
def color_for_predicate(p, freq_pred):
|
129 |
+
f = freq_pred[p]
|
130 |
+
if f >= 8: return "#2F3B52"
|
131 |
+
if f >= 5: return "#4E6E9E"
|
132 |
+
if f >= 3: return "#7FA6F8"
|
133 |
+
return "#BFD3FF"
|
134 |
+
|
135 |
+
def render_color_legend(freq_pred):
|
136 |
+
if not freq_pred:
|
137 |
+
return
|
138 |
+
# Display bins and a small summary of predicate counts in each bin
|
139 |
+
counts = {"β₯8":0, "5β7":0, "3β4":0, "1β2":0}
|
140 |
+
for p, f in freq_pred.items():
|
141 |
+
if f >= 8: counts["β₯8"] += 1
|
142 |
+
elif f >= 5: counts["5β7"] += 1
|
143 |
+
elif f >= 3: counts["3β4"] += 1
|
144 |
+
else: counts["1β2"] += 1
|
145 |
+
|
146 |
+
st.markdown("#### Legend (predicate frequency β edge color)")
|
147 |
+
cols = st.columns(4)
|
148 |
+
bins_disp = [
|
149 |
+
("#2F3B52", "β₯8", counts["β₯8"]),
|
150 |
+
("#4E6E9E", "5β7", counts["5β7"]),
|
151 |
+
("#7FA6F8", "3β4", counts["3β4"]),
|
152 |
+
("#BFD3FF", "1β2", counts["1β2"]),
|
153 |
+
]
|
154 |
+
for (c, label, cnt), col in zip(bins_disp, cols):
|
155 |
+
col.markdown(
|
156 |
+
f"""
|
157 |
+
<div style="display:flex;align-items:center;gap:8px;">
|
158 |
+
<div style="width:18px;height:12px;background:{c};border:1px solid #999;"></div>
|
159 |
+
<div><b>{label}</b> <span style="color:#666">({cnt})</span></div>
|
160 |
+
</div>
|
161 |
+
""",
|
162 |
+
unsafe_allow_html=True
|
163 |
+
)
|
164 |
+
|
165 |
+
# ββ PyVis renderer (inline assets, optional labels) βββββββββββββββββββββββββββββ
|
166 |
+
def edges_to_pyvis_with_freq(edges, label_mode: str):
|
167 |
+
"""
|
168 |
+
Render PyVis graph with:
|
169 |
+
- visible edge labels (predicate) OR tooltip-only
|
170 |
+
- edge width scaled by exact triple frequency
|
171 |
+
- edge color based on predicate frequency
|
172 |
+
- inline assets (no filesystem writes)
|
173 |
+
"""
|
174 |
+
triples = edges_to_rdf(edges)
|
175 |
+
freq_triplet, freq_pred = count_relation_frequency(triples)
|
176 |
+
|
177 |
net = Network(
|
178 |
height="700px",
|
179 |
width="100%",
|
|
|
181 |
font_color="#222222",
|
182 |
notebook=False,
|
183 |
directed=False,
|
184 |
+
cdn_resources="in_line", # avoid writing ./lib
|
185 |
)
|
186 |
+
|
187 |
+
net.set_options("""
|
188 |
+
const options = {
|
189 |
+
edges: {
|
190 |
+
font: { size: 12, align: "middle" },
|
191 |
+
smooth: { type: "dynamic" },
|
192 |
+
scaling: { min: 1, max: 10 }
|
193 |
+
},
|
194 |
+
physics: { stabilization: true }
|
195 |
+
}
|
196 |
+
""")
|
197 |
+
|
198 |
+
seen = set()
|
199 |
+
for t in triples:
|
200 |
+
s, p, o = t["subject"], t["predicate"], t["object"]
|
201 |
+
n1, n2 = f"Entity:{s}", f"Entity:{o}"
|
202 |
+
|
203 |
+
if n1 not in seen:
|
204 |
+
net.add_node(n1, label=s, title="Entity")
|
205 |
+
seen.add(n1)
|
206 |
+
if n2 not in seen:
|
207 |
+
net.add_node(n2, label=o, title="Entity")
|
208 |
+
seen.add(n2)
|
209 |
+
|
210 |
+
width_val = int(max(1, freq_triplet[(s, p, o)]))
|
211 |
+
edge_kwargs = {
|
212 |
+
"title": p, # tooltip always available
|
213 |
+
"value": width_val, # width scales with frequency
|
214 |
+
"color": color_for_predicate(p, freq_pred),
|
215 |
+
}
|
216 |
+
if label_mode == "Always visible":
|
217 |
+
edge_kwargs["label"] = p # visible text on the edge
|
218 |
+
net.add_edge(n1, n2, **edge_kwargs)
|
219 |
+
|
220 |
net.toggle_physics(True)
|
221 |
+
return net, triples, freq_triplet, freq_pred
|
222 |
+
|
223 |
+
# ββ Cytoscape.js renderer (embedded HTML; no new Python deps) βββββββββββββββββββ
|
224 |
+
def cytoscape_html(triples, freq_triplet, freq_pred, label_mode: str):
|
225 |
+
"""
|
226 |
+
Build a self-contained HTML that renders Cytoscape.js via CDN.
|
227 |
+
- Edge width = exact triple frequency
|
228 |
+
- Edge color = predicate frequency bin
|
229 |
+
- Labels: nodes always have labels; edges show label depending on label_mode
|
230 |
+
"""
|
231 |
+
# Build node and edge arrays
|
232 |
+
node_ids = {}
|
233 |
+
nodes = []
|
234 |
+
edges = []
|
235 |
+
def node_id(name):
|
236 |
+
if name not in node_ids:
|
237 |
+
node_ids[name] = f"n{len(node_ids)}"
|
238 |
+
nodes.append({"data": {"id": node_ids[name], "label": name}})
|
239 |
+
return node_ids[name]
|
240 |
+
|
241 |
+
for t in triples:
|
242 |
+
s, p, o = t["subject"], t["predicate"], t["object"]
|
243 |
+
sid, oid = node_id(s), node_id(o)
|
244 |
+
width_val = max(1, int(freq_triplet[(s, p, o)]))
|
245 |
+
color = color_for_predicate(p, freq_pred)
|
246 |
+
edge_label = p if label_mode == "Always visible" else "" # hide label if tooltip-only
|
247 |
+
edges.append({"data": {
|
248 |
+
"id": f"e{len(edges)}",
|
249 |
+
"source": sid, "target": oid,
|
250 |
+
"label": edge_label, "title": p,
|
251 |
+
"width": width_val, "color": color
|
252 |
+
}})
|
253 |
+
|
254 |
+
elements = nodes + edges
|
255 |
+
# Cytoscape style: show edge labels if present, else none; tooltip via title isn't native,
|
256 |
+
# but vis is clean and fast for large graphs.
|
257 |
+
html = f"""
|
258 |
+
<!DOCTYPE html>
|
259 |
+
<html>
|
260 |
+
<head>
|
261 |
+
<meta charset="utf-8" />
|
262 |
+
<meta name="viewport" content="width=device-width,initial-scale=1" />
|
263 |
+
<style>
|
264 |
+
html, body, #cy {{ width: 100%; height: 700px; margin: 0; padding: 0; background: #fff; }}
|
265 |
+
</style>
|
266 |
+
<script src="https://unpkg.com/[email protected]/dist/cytoscape.min.js"></script>
|
267 |
+
</head>
|
268 |
+
<body>
|
269 |
+
<div id="cy"></div>
|
270 |
+
<script>
|
271 |
+
const elements = {json.dumps(elements)};
|
272 |
+
const cy = cytoscape({{
|
273 |
+
container: document.getElementById('cy'),
|
274 |
+
elements: elements,
|
275 |
+
style: [
|
276 |
+
{{
|
277 |
+
selector: 'node',
|
278 |
+
style: {{
|
279 |
+
'label': 'data(label)',
|
280 |
+
'text-valign': 'center',
|
281 |
+
'text-halign': 'center',
|
282 |
+
'font-size': 12,
|
283 |
+
'background-color': '#76A5FD',
|
284 |
+
'color': '#222'
|
285 |
+
}}
|
286 |
+
}},
|
287 |
+
{{
|
288 |
+
selector: 'edge',
|
289 |
+
style: {{
|
290 |
+
'line-color': 'data(color)',
|
291 |
+
'width': 'mapData(width, 1, 10, 1, 10)',
|
292 |
+
'curve-style': 'bezier',
|
293 |
+
'target-arrow-shape': 'none',
|
294 |
+
'label': 'data(label)',
|
295 |
+
'font-size': 10,
|
296 |
+
'text-rotation': 'autorotate',
|
297 |
+
'text-margin-y': -4
|
298 |
+
}}
|
299 |
+
}}
|
300 |
+
],
|
301 |
+
layout: {{
|
302 |
+
name: 'cose',
|
303 |
+
animate: true,
|
304 |
+
nodeRepulsion: 8000,
|
305 |
+
idealEdgeLength: 120,
|
306 |
+
gravity: 1.2,
|
307 |
+
numIter: 1000
|
308 |
+
}}
|
309 |
+
}});
|
310 |
+
</script>
|
311 |
+
</body>
|
312 |
+
</html>
|
313 |
+
"""
|
314 |
+
return html
|
315 |
|
316 |
# ββ Input tabs βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
317 |
tab_text, tab_pdf = st.tabs(["π Paste Text", "π Upload PDF"])
|
|
|
357 |
llm = OpenAIClient(model=selected_model, temperature=temperature, top_p=top_p)
|
358 |
|
359 |
gm = GraphMaker(ontology=ontology, llm_client=llm, verbose=False)
|
360 |
+
edges = gm.from_documents(docs, delay_s_between=0)
|
361 |
|
362 |
st.success(f"Graph built with {len(edges)} edges.")
|
363 |
|
364 |
+
# Show edges table
|
365 |
df = pd.DataFrame([{
|
366 |
"node_1_label": e.node_1.label, "node_1": e.node_1.name,
|
367 |
"node_2_label": e.node_2.label, "node_2": e.node_2.name,
|
368 |
+
"relationship": e.relationship or "related_to"
|
369 |
} for e in edges])
|
370 |
st.dataframe(df, use_container_width=True)
|
371 |
|
372 |
+
# ---- Render: PyVis or Cytoscape.js
|
373 |
+
if renderer == "PyVis (interactive)":
|
374 |
+
net, triples, freq_triplet, freq_pred = edges_to_pyvis_with_freq(edges, label_mode)
|
375 |
+
html = net.generate_html() # no disk I/O
|
376 |
+
st.components.v1.html(html, height=750, scrolling=True)
|
377 |
+
else:
|
378 |
+
triples = edges_to_rdf(edges)
|
379 |
+
freq_triplet, freq_pred = count_relation_frequency(triples)
|
380 |
+
html = cytoscape_html(triples, freq_triplet, freq_pred, label_mode)
|
381 |
+
st.components.v1.html(html, height=750, scrolling=True)
|
382 |
+
|
383 |
+
# Legend (optional)
|
384 |
+
if show_legend:
|
385 |
+
render_color_legend(freq_pred)
|
386 |
+
|
387 |
+
# Download RDF tuples as JSON
|
388 |
+
st.download_button(
|
389 |
+
"Download RDF tuples (JSON)",
|
390 |
+
data=pd.Series(triples).to_json(orient="values"),
|
391 |
+
file_name="rdf_tuples.json",
|
392 |
+
mime="application/json"
|
393 |
+
)
|
394 |
|
395 |
st.markdown("---")
|
396 |
st.caption("Powered by knowledge-graph-maker via OpenRouter.")
|