File size: 10,307 Bytes
a26f93a
b35040f
 
 
 
 
1b14f4f
 
4f4519e
3450cf6
4f4519e
 
 
b35040f
c3ffb57
 
 
 
 
 
 
 
 
 
 
 
b35040f
2cf25ca
 
 
 
 
4f4519e
1b14f4f
 
 
 
 
 
 
 
 
 
 
88fa21c
 
1b14f4f
88fa21c
1b14f4f
 
 
 
 
 
 
d9cc1e0
 
1b14f4f
 
 
 
 
 
83886ae
1b14f4f
 
 
 
 
 
 
 
b35040f
 
 
 
4f4519e
 
b35040f
4f4519e
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f4519e
b35040f
2cf25ca
bf4cb6c
 
 
 
 
 
2cf25ca
bf4cb6c
2cf25ca
 
 
 
 
 
 
 
 
 
 
 
bf4cb6c
 
2cf25ca
d9cc1e0
ec99653
83886ae
b35040f
 
 
 
 
83886ae
 
b35040f
83886ae
 
 
 
d9cc1e0
 
 
 
 
83886ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35040f
83886ae
 
b35040f
d9cc1e0
 
 
 
 
83886ae
b35040f
 
 
 
624da7b
b35040f
1b14f4f
 
 
 
 
 
 
 
4f4519e
83886ae
2cf25ca
 
83886ae
 
 
 
 
 
 
 
2cf25ca
b35040f
2cf25ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35040f
 
2cf25ca
 
b35040f
 
d9cc1e0
b35040f
 
1b14f4f
 
 
 
 
 
b35040f
 
83886ae
b35040f
 
 
 
1b14f4f
b35040f
1b14f4f
b35040f
 
 
4f4519e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
import google.generativeai as genai
import re
import logging
import numpy as np

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

device = "cuda" if torch.cuda.is_available() else "cpu"

print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)

model_name = "canopylabs/orpheus-3b-0.1-ft"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")

# Available voices
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]

# Available Emotive Tags
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]

@spaces.GPU()
def generate_podcast_script(api_key, prompt, uploaded_file, duration, num_hosts):
    try:
        genai.configure(api_key=api_key)
        model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
        
        combined_content = prompt or ""
        if uploaded_file:
            file_content = uploaded_file.read().decode('utf-8')
            combined_content += "\n" + file_content if combined_content else file_content
        
        num_hosts = int(num_hosts)  # Convert to integer
        
        prompt = f"""
        Create a podcast script for {num_hosts} {'person' if num_hosts == 1 else 'people'} discussing:
        {combined_content}
        
        Duration: {duration} minutes. Include natural speech, humor, and occasional off-topic thoughts.
        Use speech fillers like um, ah. Vary emotional tone.
        
        Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
        Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.

        only provide the dialog for text to speech
        
        Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
        
        Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
        
        Ensure content flows naturally and stays on topic. Match the script length to {duration} minutes.
        {'Make sure the script is a monologue for one person.' if num_hosts == 1 else 'Ensure the dialogue alternates between two distinct voices, with one speaking on odd-numbered lines and the other on even-numbered lines.'}
        """
        
        response = model.generate_content(prompt)
        return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
    except Exception as e:
        logger.error(f"Error generating podcast script: {str(e)}")
        raise

def process_prompt(prompt, voice, tokenizer, device):
    prompt = f"{voice}: {prompt}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    
    start_token = torch.tensor([[128259]], dtype=torch.int64)
    end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
    
    modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
    attention_mask = torch.ones_like(modified_input_ids)
    
    return modified_input_ids.to(device), attention_mask.to(device)

def parse_output(generated_ids):
    token_to_find = 128257
    token_to_remove = 128258
    
    token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)

    if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
    else:
        cropped_tensor = generated_ids

    processed_rows = []
    for row in cropped_tensor:
        masked_row = row[row != token_to_remove]
        processed_rows.append(masked_row)

    code_lists = []
    for row in processed_rows:
        row_length = row.size(0)
        new_length = (row_length // 7) * 7
        trimmed_row = row[:new_length]
        trimmed_row = [t - 128266 for t in trimmed_row]
        code_lists.append(trimmed_row)
        
    return code_lists[0]

def redistribute_codes(code_list, snac_model):
    device = next(snac_model.parameters()).device  # Get the device of SNAC model
    
    layer_1 = []
    layer_2 = []
    layer_3 = []
    for i in range((len(code_list)+1)//7):
        layer_1.append(code_list[7*i])
        layer_2.append(code_list[7*i+1]-4096)
        layer_3.append(code_list[7*i+2]-(2*4096))
        layer_3.append(code_list[7*i+3]-(3*4096))
        layer_2.append(code_list[7*i+4]-(4*4096))
        layer_3.append(code_list[7*i+5]-(5*4096))
        layer_3.append(code_list[7*i+6]-(6*4096))
    
    codes = [
        torch.tensor(layer_1, device=device).unsqueeze(0),
        torch.tensor(layer_2, device=device).unsqueeze(0),
        torch.tensor(layer_3, device=device).unsqueeze(0)
    ]
    
    audio_hat = snac_model.decode(codes)
    return audio_hat.detach().squeeze().cpu().numpy()  # Always return CPU numpy array

@spaces.GPU()
@spaces.GPU()
def generate_speech(text, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, num_hosts, progress=gr.Progress()):
    if not text.strip():
        return None
    
    try:
        progress(0.1, "Processing text...")
        lines = text.split('\n')
        audio_samples = []
        
        for i, line in enumerate(lines):
            if not line.strip():
                continue
            
            if num_hosts == "2":
                voice = voice1 if i % 2 == 0 else voice2
            else:
                voice = voice1
            
            input_ids, attention_mask = process_prompt(line, voice, tokenizer, device)
            
            progress(0.3, f"Generating speech tokens for line {i+1}...")
            with torch.no_grad():
                generated_ids = model.generate(
                    input_ids,
                    attention_mask=attention_mask,
                    do_sample=True,
                    temperature=temperature,
                    top_p=top_p,
                    repetition_penalty=repetition_penalty,
                    max_new_tokens=max_new_tokens,
                    num_return_sequences=1,
                    eos_token_id=128258,
                )
            
            progress(0.6, f"Processing speech tokens for line {i+1}...")
            code_list = parse_output(generated_ids)
            
            progress(0.8, f"Converting line {i+1} to audio...")
            line_audio = redistribute_codes(code_list, snac_model)
            audio_samples.append(line_audio)
        
        # Concatenate all audio samples
        final_audio = np.concatenate(audio_samples)
        
        # Add a check for 15-second limitation
        max_samples = 24000 * 15  # 15 seconds at 24kHz sample rate
        if len(final_audio) > max_samples:
            final_audio = final_audio[:max_samples]
        
        return (24000, final_audio)
    except Exception as e:
        print(f"Error generating speech: {e}")
        return None

with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
            prompt = gr.Textbox(label="Prompt", lines=8, placeholder="Enter your text here...")
            uploaded_file = gr.File(label="Upload File")
            duration = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Duration (minutes)")
            num_hosts = gr.Radio(["1", "2"], label="Number of Hosts", value="1")
            generate_script_btn = gr.Button("Generate Podcast Script")

        with gr.Column(scale=2):
            voice1 = gr.Dropdown(
                choices=VOICES,
                value="tara",
                label="Voice 1",
                info="Select the first voice for speech generation"
            )
            voice2 = gr.Dropdown(
                choices=VOICES,
                value="dan",
                label="Voice 2",
                info="Select the second voice for speech generation"
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                temperature = gr.Slider(
                    minimum=0.1, maximum=1.5, value=0.6, step=0.05,
                    label="Temperature", 
                    info="Higher values (0.7-1.0) create more expressive but less stable speech"
                )
                top_p = gr.Slider(
                    minimum=0.1, maximum=1.0, value=0.9, step=0.05,
                    label="Top P",
                    info="Higher values produce more diverse outputs"
                )
                repetition_penalty = gr.Slider(
                    minimum=1.0, maximum=2.0, value=1.2, step=0.1,
                    label="Repetition Penalty",
                    info="Higher values discourage repetitive patterns"
                )
                max_new_tokens = gr.Slider(
                    minimum=100, maximum=2000, value=1200, step=100,
                    label="Max Length", 
                    info="Maximum length of generated audio (in tokens)"
                )
            
            with gr.Row():
                submit_btn = gr.Button("Generate Speech", variant="primary")
                clear_btn = gr.Button("Clear")
                
        with gr.Column(scale=2):
            script_output = gr.Textbox(label="Generated Script", lines=10)
            audio_output = gr.Audio(label="Generated Speech", type="numpy")
            
    generate_script_btn.click(
        fn=generate_podcast_script,
        inputs=[gemini_api_key, prompt, uploaded_file, duration, num_hosts],
        outputs=script_output
    )
    
    submit_btn.click(
        fn=generate_speech,
        inputs=[script_output, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, num_hosts],
        outputs=audio_output
    )
    
    clear_btn.click(
        fn=lambda: (None, None, None),
        inputs=[],
        outputs=[prompt, script_output, audio_output]
    )

if __name__ == "__main__":
    demo.queue().launch(share=False, ssr_mode=False)