File size: 8,176 Bytes
b27703e
152453b
 
 
ed684ca
7c61b5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62583c5
 
 
a759d12
62583c5
b27703e
 
 
 
 
3b51a16
b27703e
 
 
 
62583c5
a759d12
 
 
 
 
 
62583c5
 
a759d12
62583c5
b27703e
62583c5
9510376
4f1ff3d
 
 
 
 
 
 
 
 
 
 
 
 
 
69bf182
4f1ff3d
 
 
ee2c558
b27703e
 
 
 
 
 
62583c5
 
96f9f46
 
b3fa88f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27703e
b3fa88f
 
 
b27703e
3b51a16
 
 
 
 
 
 
 
 
 
b3fa88f
 
 
 
 
 
 
 
b27703e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7131d84
b3fa88f
 
 
 
 
 
 
 
 
 
3b51a16
 
 
b3fa88f
3b51a16
 
 
 
 
 
b3fa88f
 
 
3b51a16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# app_updated_with_filter_sets.py
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline

school_name_candidates = []

def mask_school_names(text):
    global school_name_candidates
    school_name_candidates = []

    def replacer(match):
        name = match.group(1)
        full = match.group(0)
        if 2 <= len(name) <= 20:
            school_name_candidates.append(name)
            return to_chosung(name) + match.group(2)
        else:
            return full

    text = re.sub(r"(\b[가-힣]{2,20})(초등학교|중학교|고등학교)", replacer, text)

    for name in school_name_candidates:
        pattern = rf"{re.escape(name)}\s?(초등학교|중학교|고등학교)"
        text = re.sub(pattern, to_chosung(name) + " " + r"\1", text)
    return text

model_name = "Leo97/KoELECTRA-small-v3-modu-ner"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")

# ✅ 예외 필터
NAME_ENTITY_EXCEPTIONS = set([
    '법적', '군의', '사회적', '심리적', '행정적', '의료적', '법률적',
    '개인정보', '본인', '해당', '현재', '아래', '위치', '소속'
])

REGEX_KEYWORDS_TO_MASK = set([
    '이메일', '전화번호', '연락처', '주소', '센터', '카드번호', '주민등록번호', 'IP', 'IP주소'
])

def extract_names(text):
    try:
        results = ner_pipeline(text)
    except Exception as e:
        print("NER 오류 발생:", e)
        return []

    names = []
    for entity in results:
        if entity.get("entity_group") == "PS":
            name = entity["word"].replace("##", "").strip()
            if len(name) >= 2 and name not in names and name not in NAME_ENTITY_EXCEPTIONS:
                names.append(name)

    COMMON_SUFFIXES = [
        '대표', '이사', '전무', '상무', '부장', '차장', '과장', '대리', '사원',
        '실장', '팀장', '소장', '국장', '본부장', '주임', '총무', '회장', '부회장', '사무장',
        '직원', '매니저', '지점장',
        '선생님', '선생', '교사', '교장', '교감', '부교장', '조교수', '교수', '연구원', '강사',
        '박사', '석사', '학사', '의사', '간호사', '간병인',
        '학생', '수험생', '초등학생', '중학생', '고등학생', '학부모',
        '어머니', '아버지', '엄마', '아빠', '형', '누나', '언니', '오빠', '동생',
        '아들', '딸', '할머니', '할아버지', '외할머니', '외할아버지',
        '이모', '고모', '삼촌', '숙모', '외삼촌', '고모부', '이모부', '조카', '사촌',
        '남편', '아내', '부인', '와이프', '신랑', '장모', '장인', '사위', '며느리',
        '올케', '형수', '제수씨', '매형', '처제', '시누이',
        '보호자', '피해자', '당사자', '대상자', '주민', '어르신', '기사님'
    ]

    KOREAN_JOSA = r'(이[가]|은|는|을|를|과|와|의|도|만|께서|에서|으로|에게|한테|보다|까지|부터)?'
    attached_pattern = r'([가-힣]{2,4})(' + '|'.join(COMMON_SUFFIXES) + r')' + KOREAN_JOSA
    spaced_pattern = r'([가-힣]{2,4})\s+(' + '|'.join(COMMON_SUFFIXES) + r')' + KOREAN_JOSA

    for pattern in [attached_pattern, spaced_pattern]:
        matches = re.findall(pattern, text)
        for match in matches:
            name = match[0]
            if name not in names and name not in NAME_ENTITY_EXCEPTIONS:
                names.append(name)
    return names

def to_chosung(text):
    CHOSUNG_LIST = [chr(i) for i in range(0x1100, 0x1113)]
    result = ""
    for ch in text:
        if '가' <= ch <= '힣':
            code = ord(ch) - ord('가')
            cho = code // 588
            result += CHOSUNG_LIST[cho]
        else:
            result += ch
    return result

def mask_department(text):
    text = re.sub(r"([가-힣]{2,20}학과)", lambda m: to_chosung(m.group(1)[:-2]) + "학과", text)
    return text

def sanitize_sensitive_info(text, keyword_string, replace_word):
    text = mask_school_names(text)
    text = mask_department(text)

    text = re.sub(r"(\d)학년(\s?(\d)반)?", lambda m: "*학년" + (" *반" if m.group(3) else ""), text)
    text = re.sub(r"(\d)학년\s?(\d)반", r"*학년 *반", text)

    keywords = [k.strip() for k in keyword_string.split(",") if k.strip()]
    keywords += list(REGEX_KEYWORDS_TO_MASK)
    for kw in keywords:
        pattern = rf"\b{re.escape(kw)}\b"
        text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)

    text = re.sub(r"(\d{3})-(\d{4})-(\d{4})", r"\1-****-\3", text)
    text = re.sub(r"(\d{4})년 (\d{1,2})월 (\d{1,2})일", r"19**년 \2월 *일", text)
    text = re.sub(r"(\d{1,3})번지", r"***번지", text)
    text = re.sub(r"(\d{1,3})동", r"***동", text)
    text = re.sub(r"(\d{1,4})호", r"****호", text)
    text = re.sub(r"[\w\.-]+@[\w\.-]+", r"******@****", text)
    text = re.sub(r"(\d{6})[-](\d)\d{6}", r"*******-\2*****", text)
    text = re.sub(r"([가-힣]+(대로|로|길))\s?(\d+)(호|번길|가)?", r"\1 ***", text)
    text = re.sub(r"(\d{4})[- ]?(\d{4})[- ]?(\d{4})[- ]?(\d{4})",
                  lambda m: f"{m.group(1)}-****-****-{m.group(4)}", text)
    return text

def final_name_remask_exact_only(text, mapping_dict):
    for tag, name in mapping_dict.items():
        pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
        text = re.sub(pattern, tag, text)
    return text

def refactored_mask_names(original_text, names, start_counter=100):
    korean_josa = ['이가','를','은','는','을','도','만','과','와','에게','에서','으로',
                   '까지','조차','마저','이며','이다','이나','이나마','밖에','이든','이라도',
                   '이','가','의']
    masked = original_text
    mapping = {}
    counter = start_counter
    used_names = set()
    for name in names:
        for josa in korean_josa:
            full = name + josa
            pattern = rf'(?<![\w가-힣]){re.escape(full)}(?![\w가-힣])'
            if re.search(pattern, masked):
                tag = f"N{counter:03d}"
                mapping[tag] = name
                masked = re.sub(pattern, tag + josa, masked)
                counter += 1
                used_names.add(name)
                break
    for name in names:
        if name in used_names:
            continue
        pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
        if re.search(pattern, masked):
            tag = f"N{counter:03d}"
            mapping[tag] = name
            masked = re.sub(pattern, tag, masked)
            counter += 1
    return masked, mapping

def apply_masking(text, keywords, replace_word):
    names = extract_names(text)
    masked, mapping = refactored_mask_names(text, names)
    sanitized = sanitize_sensitive_info(masked, keywords, replace_word)
    sanitized = final_name_remask_exact_only(sanitized, mapping)
    mapping_table = "\n".join([f"{k}{v}" for k, v in mapping.items()])
    return sanitized, mapping_table

with gr.Blocks() as demo:
    gr.Markdown("""
🛡️ **민감정보 마스킹 [땡땡이 마스킹]**  
이름 + 민감정보 + 초/중/고 마스킹기 (초성 기반)  
⚠️ *완벽하지 않을 수 있습니다. 반드시 직접 최종 점검하세요.*
""")
    input_text = gr.Textbox(lines=15, label="📥 원본 텍스트 입력")
    keyword_input = gr.Textbox(lines=1, label="기관 키워드 (쉼표로 구분)", value="굿네이버스, good neighbors, gn, 사회복지법인 굿네이버스")
    replace_input = gr.Textbox(lines=1, label="치환할 텍스트", value="우리기관")
    run_button = gr.Button("🚀 마스킹 실행")
    masked_output = gr.Textbox(lines=15, label="🔐 마스킹된 텍스트")
    mapping_output = gr.Textbox(lines=10, label="🏷️ 이름 태그 매핑", interactive=False)

    run_button.click(fn=apply_masking, inputs=[input_text, keyword_input, replace_input], outputs=[masked_output, mapping_output])

demo.launch()