Spaces:
Build error
Build error
File size: 6,291 Bytes
ed684ca 62583c5 4d88dd9 62583c5 96f9f46 d7c6ed1 96f9f46 d7c6ed1 96f9f46 d7c6ed1 96f9f46 c21f1e8 96f9f46 62583c5 96f9f46 62583c5 96f9f46 62583c5 96f9f46 d7c6ed1 96f9f46 d7c6ed1 96f9f46 d7c6ed1 96f9f46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import re
# 모델 초기화
model_name = "Leo97/KoELECTRA-small-v3-modu-ner"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
def extract_names(text):
results = ner_pipeline(text)
names = []
for entity in results:
if entity["entity_group"] == "PS":
name = entity["word"].replace("##", "").strip()
if len(name) >= 2 and name not in names:
names.append(name)
return names
def refactored_mask_names(original_text, names, start_counter=100):
korean_josa = ['이가','를','은','는','을','도','만','과','와','에게','에서','으로',
'까지','조차','마저','이며','이다','이나','이나마','밖에','이든','이라도',
'이','가','의']
masked = original_text
mapping = {}
counter = start_counter
used_names = set()
for name in names:
for josa in korean_josa:
full = name + josa
pattern = rf'(?<![\w가-힣]){re.escape(full)}(?![\w가-힣])'
if re.search(pattern, masked):
tag = f"N{counter:03d}"
mapping[tag] = name
masked = re.sub(pattern, tag + josa, masked)
counter += 1
used_names.add(name)
break
for name in names:
if name in used_names:
continue
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
if re.search(pattern, masked):
tag = f"N{counter:03d}"
mapping[tag] = name
masked = re.sub(pattern, tag, masked)
counter += 1
return masked, mapping
def to_chosung(text):
CHOSUNG_LIST = [chr(i) for i in range(0x1100, 0x1113)]
result = ""
for ch in text:
if '가' <= ch <= '힣':
code = ord(ch) - ord('가')
cho = code // 588
result += CHOSUNG_LIST[cho]
else:
result += ch
return result
def mask_school_names(text):
school_patterns = [
(r"(\b[가-힣]{2,20})(초등학교|중학교|고등학교)", True),
(r"(\b[가-힣]{2,20})\s(초등학교|중학교|고등학교)", False),
]
for pattern, attach in school_patterns:
text = re.sub(pattern, lambda m: to_chosung(m.group(1)) + (" " if not attach else "") + m.group(2), text)
return text
def mask_department(text):
text = re.sub(r"([가-힣]{2,20}학과)", lambda m: to_chosung(m.group(1)[:-2]) + "학과", text)
return text
def sanitize_sensitive_info(text, keyword_string, replace_word):
text = mask_school_names(text)
text = mask_department(text)
text = re.sub(r"(\d)학년(\s?(\d)반)?", lambda m: "*학년" + (" *반" if m.group(3) else ""), text)
text = re.sub(r"(\d)학년\s?(\d)반", r"*학년 *반", text)
keywords = [k.strip() for k in keyword_string.split(",") if k.strip()]
for kw in keywords:
pattern = rf"\b{re.escape(kw)}\b"
text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)
text = re.sub(r"(\d{3})-(\d{4})-(\d{4})", r"\1-****-\3", text)
text = re.sub(r"(\d{4})년 (\d{1,2})월 (\d{1,2})일", r"19**년 \2월 *일", text)
text = re.sub(r"(\d{1,3})번지", r"***번지", text)
text = re.sub(r"(\d{1,3})동", r"***동", text)
text = re.sub(r"(\d{1,4})호", r"****호", text)
text = re.sub(r"[\w\.-]+@[\w\.-]+", r"******@****", text)
text = re.sub(r"(\d{6})[-](\d)\d{6}", r"*******-\2*****", text)
text = re.sub(r"([가-힣]+(대로|로|길))\s?(\d+)(호|번길|가)?", r"\1 ***", text)
text = re.sub(r"(\d{2,6})[-]?(\d{2,6})[-]?(\d{2,6})", lambda m: f"{m.group(1)[:2]}{'*'*(len(m.group(1))-2)}{'*'*len(m.group(2))}{m.group(3)[-4:]}", text)
text = re.sub(r"(\d{4})[- ]?(\d{4})[- ]?(\d{4})[- ]?(\d{4})", lambda m: f"{m.group(1)}-****-****-{m.group(4)}", text)
text = re.sub(r"(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})", lambda m: f"{m.group(1)}.{m.group(2)}.*.*", text)
text = re.sub(r"([가-힣]{1,10})(은행|동|로|길)\s?([\d\-]{4,})", lambda m: m.group(1) + m.group(2) + " " + re.sub(r"\d", "*", m.group(3)), text)
return text
def final_name_remask_exact_only(text, mapping_dict):
for tag, name in mapping_dict.items():
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
text = re.sub(pattern, tag, text)
return text
def apply_masking(text, keywords, replace_word):
names = extract_names(text)
masked, mapping = refactored_mask_names(text, names)
sanitized = sanitize_sensitive_info(masked, keywords, replace_word)
sanitized = final_name_remask_exact_only(sanitized, mapping)
mapping_table = "\n".join([f"{k} → {v}" for k, v in mapping.items()])
return sanitized, mapping_table
def remask_with_mapping(text, mapping_string):
mapping = {}
for line in mapping_string.strip().split("\n"):
if "→" in line:
tag, name = line.split("→")
mapping[tag.strip()] = name.strip()
for tag, name in mapping.items():
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
text = re.sub(pattern, tag, text)
return text
with gr.Blocks() as demo:
gr.Markdown("🛡️ 민감정보 마스킹 [땡땡이 마스킹] : 이름 + 민감정보 + 초/중/고 마스킹기 (초성 기반)")
input_text = gr.Textbox(lines=15, label="📥 원본 텍스트 입력")
keyword_input = gr.Textbox(lines=1, label="기관 키워드 (쉼표로 구분)", value="굿네이버스, good neighbors, gn, 사회복지법인 굿네이버스")
replace_input = gr.Textbox(lines=1, label="치환할 텍스트", value="우리기관")
run_button = gr.Button("🚀 마스킹 실행")
masked_output = gr.Textbox(lines=15, label="🔐 마스킹된 텍스트")
mapping_output = gr.Textbox(lines=10, label="🏷️ 이름 태그 매핑", interactive=False)
run_button.click(fn=apply_masking, inputs=[input_text, keyword_input, replace_input], outputs=[masked_output, mapping_output])
demo.launch()
|