File size: 6,291 Bytes
ed684ca
62583c5
 
 
 
4d88dd9
62583c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f9f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7c6ed1
96f9f46
 
 
 
d7c6ed1
96f9f46
 
 
d7c6ed1
96f9f46
 
c21f1e8
 
 
96f9f46
62583c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f9f46
62583c5
 
96f9f46
62583c5
 
 
 
96f9f46
 
 
 
 
 
 
 
 
 
 
 
 
 
d7c6ed1
96f9f46
 
 
d7c6ed1
 
96f9f46
d7c6ed1
96f9f46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

import gradio as gr
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import re

# 모델 초기화
model_name = "Leo97/KoELECTRA-small-v3-modu-ner"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)

def extract_names(text):
    results = ner_pipeline(text)
    names = []
    for entity in results:
        if entity["entity_group"] == "PS":
            name = entity["word"].replace("##", "").strip()
            if len(name) >= 2 and name not in names:
                names.append(name)
    return names

def refactored_mask_names(original_text, names, start_counter=100):
    korean_josa = ['이가','를','은','는','을','도','만','과','와','에게','에서','으로',
                   '까지','조차','마저','이며','이다','이나','이나마','밖에','이든','이라도',
                   '이','가','의']
    masked = original_text
    mapping = {}
    counter = start_counter
    used_names = set()
    for name in names:
        for josa in korean_josa:
            full = name + josa
            pattern = rf'(?<![\w가-힣]){re.escape(full)}(?![\w가-힣])'
            if re.search(pattern, masked):
                tag = f"N{counter:03d}"
                mapping[tag] = name
                masked = re.sub(pattern, tag + josa, masked)
                counter += 1
                used_names.add(name)
                break
    for name in names:
        if name in used_names:
            continue
        pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
        if re.search(pattern, masked):
            tag = f"N{counter:03d}"
            mapping[tag] = name
            masked = re.sub(pattern, tag, masked)
            counter += 1
    return masked, mapping

def to_chosung(text):
    CHOSUNG_LIST = [chr(i) for i in range(0x1100, 0x1113)]
    result = ""
    for ch in text:
        if '가' <= ch <= '힣':
            code = ord(ch) - ord('가')
            cho = code // 588
            result += CHOSUNG_LIST[cho]
        else:
            result += ch
    return result

def mask_school_names(text):
    school_patterns = [
        (r"(\b[가-힣]{2,20})(초등학교|중학교|고등학교)", True),
        (r"(\b[가-힣]{2,20})\s(초등학교|중학교|고등학교)", False),
    ]
    for pattern, attach in school_patterns:
        text = re.sub(pattern, lambda m: to_chosung(m.group(1)) + (" " if not attach else "") + m.group(2), text)
    return text


def mask_department(text):
    text = re.sub(r"([가-힣]{2,20}학과)", lambda m: to_chosung(m.group(1)[:-2]) + "학과", text)
    return text


def sanitize_sensitive_info(text, keyword_string, replace_word):
    text = mask_school_names(text)
    text = mask_department(text)
    text = re.sub(r"(\d)학년(\s?(\d)반)?", lambda m: "*학년" + (" *반" if m.group(3) else ""), text)
    text = re.sub(r"(\d)학년\s?(\d)반", r"*학년 *반", text)

    keywords = [k.strip() for k in keyword_string.split(",") if k.strip()]
    for kw in keywords:
        pattern = rf"\b{re.escape(kw)}\b"
        text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)
    text = re.sub(r"(\d{3})-(\d{4})-(\d{4})", r"\1-****-\3", text)
    text = re.sub(r"(\d{4})년 (\d{1,2})월 (\d{1,2})일", r"19**년 \2월 *일", text)
    text = re.sub(r"(\d{1,3})번지", r"***번지", text)
    text = re.sub(r"(\d{1,3})동", r"***동", text)
    text = re.sub(r"(\d{1,4})호", r"****호", text)
    text = re.sub(r"[\w\.-]+@[\w\.-]+", r"******@****", text)
    text = re.sub(r"(\d{6})[-](\d)\d{6}", r"*******-\2*****", text)
    text = re.sub(r"([가-힣]+(대로|로|길))\s?(\d+)(호|번길|가)?", r"\1 ***", text)
    text = re.sub(r"(\d{2,6})[-]?(\d{2,6})[-]?(\d{2,6})", lambda m: f"{m.group(1)[:2]}{'*'*(len(m.group(1))-2)}{'*'*len(m.group(2))}{m.group(3)[-4:]}", text)
    text = re.sub(r"(\d{4})[- ]?(\d{4})[- ]?(\d{4})[- ]?(\d{4})", lambda m: f"{m.group(1)}-****-****-{m.group(4)}", text)
    text = re.sub(r"(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})", lambda m: f"{m.group(1)}.{m.group(2)}.*.*", text)
    text = re.sub(r"([가-힣]{1,10})(은행|동|로|길)\s?([\d\-]{4,})", lambda m: m.group(1) + m.group(2) + " " + re.sub(r"\d", "*", m.group(3)), text)
    return text

def final_name_remask_exact_only(text, mapping_dict):
    for tag, name in mapping_dict.items():
        pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
        text = re.sub(pattern, tag, text)
    return text

def apply_masking(text, keywords, replace_word):
    names = extract_names(text)
    masked, mapping = refactored_mask_names(text, names)
    sanitized = sanitize_sensitive_info(masked, keywords, replace_word)
    sanitized = final_name_remask_exact_only(sanitized, mapping)
    mapping_table = "\n".join([f"{k}{v}" for k, v in mapping.items()])
    return sanitized, mapping_table

def remask_with_mapping(text, mapping_string):
    mapping = {}
    for line in mapping_string.strip().split("\n"):
        if "→" in line:
            tag, name = line.split("→")
            mapping[tag.strip()] = name.strip()
    for tag, name in mapping.items():
        pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
        text = re.sub(pattern, tag, text)
    return text

with gr.Blocks() as demo:
    gr.Markdown("🛡️ 민감정보 마스킹 [땡땡이 마스킹] : 이름 + 민감정보 + 초/중/고 마스킹기 (초성 기반)")
    input_text = gr.Textbox(lines=15, label="📥 원본 텍스트 입력")
    keyword_input = gr.Textbox(lines=1, label="기관 키워드 (쉼표로 구분)", value="굿네이버스, good neighbors, gn, 사회복지법인 굿네이버스")
    replace_input = gr.Textbox(lines=1, label="치환할 텍스트", value="우리기관")
    run_button = gr.Button("🚀 마스킹 실행")
    masked_output = gr.Textbox(lines=15, label="🔐 마스킹된 텍스트")
    mapping_output = gr.Textbox(lines=10, label="🏷️ 이름 태그 매핑", interactive=False)
    
    run_button.click(fn=apply_masking, inputs=[input_text, keyword_input, replace_input], outputs=[masked_output, mapping_output])
    
demo.launch()