Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
|
2 |
import re
|
3 |
import gradio as gr
|
4 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
5 |
import threading
|
|
|
6 |
|
7 |
TAG_PREFIX = "N"
|
8 |
|
@@ -27,6 +27,7 @@ OCCUPATIONAL_TITLES = ['대표', '이사', '전무', '상무', '부장', '차장
|
|
27 |
'교감', '부교장', '조교수', '교수', '연구원', '강사', '박사', '석사', '학사',
|
28 |
'의사', '간호사', '간병인', '보호자', '피해자', '당사자', '대상자', '주민', '어르신', '기사님']
|
29 |
COMMON_SUFFIXES = FAMILY_TITLES + ACADEMIC_TITLES + OCCUPATIONAL_TITLES
|
|
|
30 |
|
31 |
model_name = "Leo97/KoELECTRA-small-v3-modu-ner"
|
32 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -45,149 +46,95 @@ def to_chosung(text):
|
|
45 |
result += ch
|
46 |
return result
|
47 |
|
48 |
-
def expand_name_with_prefix_suffix(text, base_names):
|
49 |
-
detected = set()
|
50 |
-
for name in base_names:
|
51 |
-
pattern1 = re.compile(rf'([가-힣]){re.escape(name)}(학생|선생|씨|님)?(이|가|은|는|을|를|께서|에게|에서)?')
|
52 |
-
for m in pattern1.finditer(text):
|
53 |
-
detected.add(m.group(0))
|
54 |
-
pattern2 = re.compile(rf'{re.escape(name)}(씨|님)?(이|가|은|는|을|를|께서|에게|에서)?')
|
55 |
-
for m in pattern2.finditer(text):
|
56 |
-
detected.add(m.group(0))
|
57 |
-
return list(detected)
|
58 |
-
|
59 |
def extract_names(text):
|
60 |
-
|
61 |
-
results = ner_pipeline(text)
|
62 |
-
except Exception as e:
|
63 |
-
print("NER 오류 발생:", e)
|
64 |
-
return []
|
65 |
names = []
|
66 |
-
base_names = set()
|
67 |
for entity in results:
|
68 |
if entity.get("entity_group") == "PS":
|
69 |
name = entity["word"].replace("##", "").strip()
|
70 |
if len(name) >= 2 and name not in NAME_ENTITY_EXCEPTIONS:
|
71 |
names.append(name)
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
if name not in names:
|
76 |
-
names.append(name)
|
77 |
-
return names
|
78 |
-
|
79 |
-
def refactored_mask_names(original_text, names, start_counter=100):
|
80 |
-
korean_josa = ['이가','를','은','는','을','도','만','과','와','에게','에서','으로','까지','조차','마저','이며','이다','이나','이나마','밖에','이든','이라도','이','가','의']
|
81 |
-
masked = original_text
|
82 |
mapping = {}
|
83 |
-
|
84 |
-
|
85 |
for name in names:
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
tag = f"{TAG_PREFIX}{counter:03d}"
|
91 |
-
mapping[tag] = name
|
92 |
-
masked = re.sub(pattern, tag + josa, masked)
|
93 |
-
counter += 1
|
94 |
-
used_names.add(name)
|
95 |
-
break
|
96 |
-
for name in names:
|
97 |
-
if name in used_names:
|
98 |
-
continue
|
99 |
-
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
|
100 |
-
if re.search(pattern, masked):
|
101 |
-
tag = f"{TAG_PREFIX}{counter:03d}"
|
102 |
mapping[tag] = name
|
103 |
-
masked = re.sub(pattern, tag, masked)
|
104 |
counter += 1
|
105 |
-
return
|
106 |
-
|
107 |
-
def final_name_remask_exact_only(text, mapping_dict):
|
108 |
-
for tag, name in mapping_dict.items():
|
109 |
-
pattern = rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])'
|
110 |
-
text = re.sub(pattern, tag, text)
|
111 |
-
return text
|
112 |
|
113 |
-
def
|
114 |
updated = {}
|
115 |
-
for tag, name in
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
return updated
|
125 |
|
126 |
-
def
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
masked = [(part if i % 2 == 0 else '*' * len(part)) if part.isdigit() else part for i, part in enumerate(parts)]
|
131 |
-
return '.'.join(masked) if '.' in match.group() else '-'.join(masked)
|
132 |
-
text = re.sub(r"(?<![\\$\\\\])(?<!\d,)(?:\d{2,4}[.-]){1,3}\d{2,4}(?!\d)", mask_sequence, text)
|
133 |
-
text = re.sub(r"(\d{1,3})동", r"***동", text)
|
134 |
-
text = re.sub(r"(\d{1,4})호", r"****호", text)
|
135 |
-
return text
|
136 |
|
137 |
def mask_department(text):
|
138 |
-
return re.sub(r"([가-힣]{2,20}학과
|
139 |
|
140 |
-
def
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
school_name_candidates.append(name)
|
147 |
-
return to_chosung(name) + match.group(2)
|
148 |
-
return match.group(0)
|
149 |
-
text = re.sub(r"(\b[가-힣]{2,20})(초등학교|중학교|고등학교)", replacer, text)
|
150 |
-
for name in school_name_candidates:
|
151 |
-
pattern = rf"{re.escape(name)}\s?(초등학교|중학교|고등학교)"
|
152 |
-
text = re.sub(pattern, to_chosung(name) + " " + r"\1", text)
|
153 |
return text
|
154 |
|
155 |
def sanitize_sensitive_info(text, keyword_string, replace_word):
|
156 |
text = postprocess_sensitive_patterns(text)
|
157 |
text = mask_school_names(text)
|
158 |
text = mask_department(text)
|
159 |
-
text = re.sub(r"(\d)학년(\s?(\d)반)?",
|
160 |
keywords = [k.strip() for k in keyword_string.split(",") if k.strip()] + list(REGEX_KEYWORDS_TO_MASK)
|
161 |
for kw in keywords:
|
162 |
-
|
163 |
-
text = re.sub(pattern, replace_word, text, flags=re.IGNORECASE)
|
164 |
-
text = re.sub(r"(\d{6})[-](\d)\d{6}", r"*******-\2*****", text)
|
165 |
-
text = re.sub(r"([가-힣]+(대로|로|길))\s?(\d+)(호|번길|가)?", r"\1 ***", text)
|
166 |
return text
|
167 |
|
168 |
-
def apply_masking(text,
|
|
|
|
|
169 |
names = extract_names(text)
|
170 |
-
|
171 |
-
sanitized = sanitize_sensitive_info(masked, keywords, replace_word)
|
172 |
|
173 |
-
def
|
174 |
-
updated_mapping =
|
175 |
-
final_output = final_name_remask_exact_only(text, updated_mapping) # 원본 기준 재적용!!
|
176 |
final_map = "\n".join([f"{k} → {v}" for k, v in updated_mapping.items()])
|
177 |
-
masked_output.update(value=
|
178 |
mapping_output.update(value=final_map)
|
179 |
|
180 |
-
threading.Timer(0.2,
|
181 |
-
|
182 |
-
return
|
183 |
|
184 |
with gr.Blocks() as demo:
|
185 |
-
gr.Markdown("
|
186 |
-
input_text = gr.Textbox(lines=15, label="
|
187 |
keyword_input = gr.Textbox(lines=1, label="기관 키워드 (쉼표 구분)", value="굿네이버스, 사회복지법인 굿네이버스")
|
188 |
replace_input = gr.Textbox(lines=1, label="치환할 텍스트", value="우리기관")
|
189 |
run_button = gr.Button("🚀 마스킹 실행")
|
190 |
masked_output = gr.Textbox(lines=15, label="🔐 마스킹 결과")
|
191 |
-
mapping_output = gr.Textbox(lines=10, label="🏷️
|
192 |
run_button.click(fn=apply_masking, inputs=[input_text, keyword_input, replace_input], outputs=[masked_output, mapping_output])
|
193 |
demo.launch()
|
|
|
1 |
|
2 |
import re
|
3 |
import gradio as gr
|
|
|
4 |
import threading
|
5 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
6 |
|
7 |
TAG_PREFIX = "N"
|
8 |
|
|
|
27 |
'교감', '부교장', '조교수', '교수', '연구원', '강사', '박사', '석사', '학사',
|
28 |
'의사', '간호사', '간병인', '보호자', '피해자', '당사자', '대상자', '주민', '어르신', '기사님']
|
29 |
COMMON_SUFFIXES = FAMILY_TITLES + ACADEMIC_TITLES + OCCUPATIONAL_TITLES
|
30 |
+
COMMON_JOSA = ['이', '가', '은', '는', '을', '를', '께서', '에게', '에서']
|
31 |
|
32 |
model_name = "Leo97/KoELECTRA-small-v3-modu-ner"
|
33 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
46 |
result += ch
|
47 |
return result
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def extract_names(text):
|
50 |
+
results = ner_pipeline(text)
|
|
|
|
|
|
|
|
|
51 |
names = []
|
|
|
52 |
for entity in results:
|
53 |
if entity.get("entity_group") == "PS":
|
54 |
name = entity["word"].replace("##", "").strip()
|
55 |
if len(name) >= 2 and name not in NAME_ENTITY_EXCEPTIONS:
|
56 |
names.append(name)
|
57 |
+
return list(set(names))
|
58 |
+
|
59 |
+
def apply_name_tags(text, names, start=100):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
mapping = {}
|
61 |
+
tagged = text
|
62 |
+
counter = start
|
63 |
for name in names:
|
64 |
+
tag = f"{TAG_PREFIX}{counter:03d}"
|
65 |
+
pattern = re.compile(rf'(?<![\w가-힣]){re.escape(name)}(?![\w가-힣])')
|
66 |
+
tagged, n = pattern.subn(tag, tagged)
|
67 |
+
if n > 0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
mapping[tag] = name
|
|
|
69 |
counter += 1
|
70 |
+
return tagged, mapping
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
def expand_from_tag_context(tagged_text, mapping):
|
73 |
updated = {}
|
74 |
+
for tag, name in mapping.items():
|
75 |
+
idx = tagged_text.find(tag)
|
76 |
+
if idx == -1:
|
77 |
+
updated[tag] = name
|
78 |
+
continue
|
79 |
+
context = tagged_text[max(0, idx - 50): idx + 50]
|
80 |
+
pattern = re.compile(rf'([가-힣])?{re.escape(name)}({"|".join(COMMON_SUFFIXES)})?({"|".join(COMMON_JOSA)})?')
|
81 |
+
matches = pattern.findall(context)
|
82 |
+
if matches:
|
83 |
+
longest = max(matches, key=lambda x: len(''.join(x)))
|
84 |
+
updated[tag] = ''.join(longest)
|
85 |
+
else:
|
86 |
+
updated[tag] = name
|
87 |
return updated
|
88 |
|
89 |
+
def mask_school_names(text):
|
90 |
+
def replace_school(m):
|
91 |
+
return to_chosung(m.group(1)) + m.group(2)
|
92 |
+
return re.sub(r"([가-힣]{2,20})(초등학교|중학교|고등학교)", replace_school, text)
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
def mask_department(text):
|
95 |
+
return re.sub(r"([가-힣]{2,20})학과", lambda m: to_chosung(m.group(1)) + "학과", text)
|
96 |
|
97 |
+
def postprocess_sensitive_patterns(text):
|
98 |
+
text = re.sub(r"[\w\.-]+@", "******@", text)
|
99 |
+
text = re.sub(r"(\d{6})[- ]?(\d{7})", "******-*******", text)
|
100 |
+
text = re.sub(r"(\d{3})[- ]?(\d{4})[- ]?(\d{4})", "***-****-****", text)
|
101 |
+
text = re.sub(r"(\d{1,3})동", "***동", text)
|
102 |
+
text = re.sub(r"(\d{1,4})호", "****호", text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
return text
|
104 |
|
105 |
def sanitize_sensitive_info(text, keyword_string, replace_word):
|
106 |
text = postprocess_sensitive_patterns(text)
|
107 |
text = mask_school_names(text)
|
108 |
text = mask_department(text)
|
109 |
+
text = re.sub(r"(\d)학년(\s?(\d)반)?", "*학년 *반", text)
|
110 |
keywords = [k.strip() for k in keyword_string.split(",") if k.strip()] + list(REGEX_KEYWORDS_TO_MASK)
|
111 |
for kw in keywords:
|
112 |
+
text = re.sub(rf"{re.escape(kw)}", replace_word, text, flags=re.IGNORECASE)
|
|
|
|
|
|
|
113 |
return text
|
114 |
|
115 |
+
def apply_masking(text, keyword_string, replace_word):
|
116 |
+
original = text
|
117 |
+
text = sanitize_sensitive_info(text, keyword_string, replace_word)
|
118 |
names = extract_names(text)
|
119 |
+
tagged, mapping = apply_name_tags(text, names)
|
|
|
120 |
|
121 |
+
def finalize():
|
122 |
+
updated_mapping = expand_from_tag_context(tagged, mapping)
|
|
|
123 |
final_map = "\n".join([f"{k} → {v}" for k, v in updated_mapping.items()])
|
124 |
+
masked_output.update(value=tagged)
|
125 |
mapping_output.update(value=final_map)
|
126 |
|
127 |
+
threading.Timer(0.2, finalize).start()
|
128 |
+
initial_map = "\n".join([f"{k} → {v}" for k, v in mapping.items()])
|
129 |
+
return tagged, initial_map
|
130 |
|
131 |
with gr.Blocks() as demo:
|
132 |
+
gr.Markdown("🧠 **v4.2 ULTIMATE FULL: 태그 기반 확장 + 민감정보 마스킹 완전체**")
|
133 |
+
input_text = gr.Textbox(lines=15, label="📄 입력 텍스트")
|
134 |
keyword_input = gr.Textbox(lines=1, label="기관 키워드 (쉼표 구분)", value="굿네이버스, 사회복지법인 굿네이버스")
|
135 |
replace_input = gr.Textbox(lines=1, label="치환할 텍스트", value="우리기관")
|
136 |
run_button = gr.Button("🚀 마스킹 실행")
|
137 |
masked_output = gr.Textbox(lines=15, label="🔐 마스킹 결과")
|
138 |
+
mapping_output = gr.Textbox(lines=10, label="🏷️ 태그 매핑", interactive=False)
|
139 |
run_button.click(fn=apply_masking, inputs=[input_text, keyword_input, replace_input], outputs=[masked_output, mapping_output])
|
140 |
demo.launch()
|