Spaces:
Sleeping
Sleeping
File size: 1,063 Bytes
3e261a2 62923ee 687db51 62923ee 3e261a2 62923ee 7b7086e 3e261a2 7b7086e 798cc05 bf4250f 3e261a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# Import required libraries
import gradio as gr # For interface
from sentence_transformers import SentenceTransformer # For embedding the text
import torch # For gpu
# Make the app device agnostic
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# Load a pretrained Sentence Transformer model and move it to the appropriate device
model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
model = model.to(device)
# Function that does the embedding
def predict(input_text):
# Calculate embeddings by calling model.encode(), specifying the device
embeddings = model.encode(input_text, device=device)
return embeddings
# Gradio app interface
gradio_app = gr.Interface(
predict,
inputs="text",
outputs=gr.Textbox(lines=30, placeholder="Scrollable array output")),
title="Text to Vector Generator",
description="Input a text and get its vector representation using an embedding model (mixedbread-ai/mxbai-embed-large-v1)."
)
if __name__ == "__main__":
gradio_app.launch() |