bnoy1's picture
Create app.py
c8a491f verified
raw
history blame
1.89 kB
import gradio as gr
from datasets import load_dataset
from transformers import AutoImageProcessor, AutoModelForImageClassification, Trainer, TrainingArguments
import torch
import os
# 讟讜注谞讬诐 讚讗讟讗住讟 诪讛转讬拽讬讜转
dataset = load_dataset("imagefolder", data_dir=".", split={"train": "train[:80%]", "test": "train[80%:]"})
# 讘讜讞专讬诐 诪讜讚诇 讘住讬住讬
checkpoint = "google/vit-tiny-patch16-224"
processor = AutoImageProcessor.from_pretrained(checkpoint)
model = AutoModelForImageClassification.from_pretrained(
checkpoint,
num_labels=3,
id2label={0: "rock", 1: "paper", 2: "scissors"},
label2id={"rock": 0, "paper": 1, "scissors": 2}
)
# 驻讜谞拽爪讬讛 诇注讬讘讜讚 讛转诪讜谞讜转
def preprocess(examples):
images = [x.convert("RGB") for x in examples["image"]]
inputs = processor(images=images, return_tensors="pt")
inputs["labels"] = examples["label"]
return inputs
dataset = dataset.map(preprocess, batched=True)
# 讛讙讚专讜转 讗讬诪讜谉
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
save_strategy="epoch",
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
num_train_epochs=5,
load_best_model_at_end=True,
logging_dir='./logs',
logging_steps=5,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
)
# 讗讬诪讜谉
trainer.train()
# 驻讜谞拽爪讬讛 诇讛专爪转 讞讬讝讜讬 注诇 转诪讜谞讛 讞讚砖讛
def predict(image):
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
label = model.config.id2label[predicted_class_idx]
return label
# 讘谞讬讬转 讗驻诇讬拽爪讬讛
demo = gr.Interface(fn=predict, inputs="image", outputs="text")
demo.launch()