Spaces:
Sleeping
Sleeping
File size: 8,213 Bytes
4fb650d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import gradio as gr
import numpy as np
import torch
import os
import tempfile
from transformers import (
AutoModelForSpeechSeq2Seq,
AutoProcessor,
pipeline,
AutoTokenizer,
AutoModelForCausalLM
)
# Check if CUDA is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Initialize pyttsx3 for local TTS
def load_local_tts():
import pyttsx3
engine = pyttsx3.init()
engine.setProperty('rate', 150) # Speed of speech
engine.setProperty('volume', 0.9) # Volume
voices = engine.getProperty('voices')
if len(voices) > 1:
engine.setProperty('voice', voices[1].id) # Set female voice
return engine
# Initialize the TTS engine
print("Loading local TTS engine...")
tts_engine = load_local_tts()
def text_to_speech_local(text):
"""Convert text to speech using pyttsx3 local TTS engine"""
import tempfile
import soundfile as sf
# Create a temporary file to store the audio
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_file:
temp_filename = temp_file.name
# Generate speech to the temporary file
tts_engine.save_to_file(text, temp_filename)
tts_engine.runAndWait()
# Read the audio file
audio_data, sample_rate = sf.read(temp_filename)
# Convert to the expected format
if len(audio_data.shape) == 1:
audio_data = audio_data.reshape(1, -1)
else:
audio_data = audio_data[:, 0].reshape(1, -1)
# Ensure it's int16
audio_data = (audio_data * 32767).astype(np.int16)
# Clean up the temporary file
os.unlink(temp_filename)
return (sample_rate, audio_data)
# Load ASR model (Whisper)
def load_asr_model():
model_id = "openai/whisper-small"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
return pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=False,
torch_dtype=torch_dtype,
device=device,
)
# Load LLM model
def load_llm_model():
model_id = "facebook/opt-1.3b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True
)
model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id
if hasattr(model.config, "word_embed_proj_dim"):
model.config._remove_wrong_keys = False
model.to(device)
return model, tokenizer
# Initialize models
print("Loading ASR model...")
asr_pipeline = load_asr_model()
print("Loading LLM model...")
llm_model, llm_tokenizer = load_llm_model()
# Chat history management
chat_history = []
def generate_response(prompt):
# If chat history is empty, add a system message
if not chat_history:
chat_history.append({"role": "system", "content": "You are a helpful, friendly AI assistant. Keep your responses concise and conversational."})
# Add user message to history
chat_history.append({"role": "user", "content": prompt})
# Build prompt from chat history
full_prompt = ""
for message in chat_history:
if message["role"] == "system":
full_prompt += f"System: {message['content']}\n"
elif message["role"] == "user":
full_prompt += f"User: {message['content']}\n"
elif message["role"] == "assistant":
full_prompt += f"Assistant: {message['content']}\n"
full_prompt += "Assistant: "
# Encode input
encoded_input = llm_tokenizer.encode_plus(
full_prompt,
return_tensors="pt",
padding=False,
add_special_tokens=True,
return_attention_mask=True
)
input_ids = encoded_input["input_ids"].to(device)
attention_mask = torch.ones_like(input_ids).to(device)
# Generate response
with torch.no_grad():
try:
output = llm_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=llm_tokenizer.pad_token_id,
eos_token_id=llm_tokenizer.eos_token_id,
use_cache=True
)
except Exception as e:
output = llm_model.generate(
input_ids=input_ids,
max_new_tokens=128,
do_sample=True,
temperature=0.7
)
# Decode output
response_text = llm_tokenizer.decode(output[0], skip_special_tokens=True)
response_text = response_text.split("Assistant: ")[-1].strip()
# Add assistant response to history
chat_history.append({"role": "assistant", "content": response_text})
# Keep history manageable
if len(chat_history) > 10:
chat_history.pop(1)
return response_text
def demo():
with gr.Blocks() as demo:
gr.Markdown("# Voice Chatbot")
gr.Markdown("Simply speak into the microphone and get an audio response.")
audio_input = gr.Audio(sources=["microphone"], type="numpy", label="Speak")
audio_output = gr.Audio(label="Response", autoplay=True)
transcript_display = gr.Textbox(label="Conversation")
def process_audio(audio):
if audio is None:
return None, "No audio detected."
# Track conversation for display
conversation_text = ""
# Process audio
sample_rate, audio_array = audio
# Convert to float32 for ASR
audio_float32 = audio_array.flatten().astype(np.float32) / 32768.0
# Speech-to-text
transcript = asr_pipeline({
"sampling_rate": sample_rate,
"raw": audio_float32
})
prompt = transcript["text"]
conversation_text += f"You: {prompt}\n"
print(f"Transcribed: {prompt}")
# Generate response
response_text = generate_response(prompt)
conversation_text += f"Assistant: {response_text}\n"
print(f"Response: {response_text}")
# Convert to speech
sample_rate, audio_array = text_to_speech_local(response_text)
# Concatenate chunks for Gradio
full_audio = np.concatenate([audio_array[:, i:i+int(sample_rate*0.2)]
for i in range(0, audio_array.shape[1], int(sample_rate*0.2))
if audio_array[:, i:i+int(sample_rate*0.2)].size > 0], axis=1)
return (sample_rate, full_audio), conversation_text
audio_input.change(process_audio,
inputs=[audio_input],
outputs=[audio_output, transcript_display])
clear_btn = gr.Button("Clear Conversation")
clear_btn.click(lambda: (None, ""), outputs=[audio_output, transcript_display])
# Add function to clear chat history
def reset_chat():
global chat_history
chat_history = []
return None, "Conversation history cleared."
reset_btn = gr.Button("Reset Chat History")
reset_btn.click(reset_chat, outputs=[audio_output, transcript_display])
demo.launch()
if __name__ == "__main__":
demo() |