Spaces:
Sleeping
Sleeping
hashhac
commited on
Commit
·
36420ca
1
Parent(s):
be00791
embeddings added
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5For
|
|
5 |
import soundfile as sf
|
6 |
import tempfile
|
7 |
import os
|
|
|
8 |
|
9 |
# Check if CUDA is available, otherwise use CPU
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -14,6 +15,10 @@ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_asr")
|
|
14 |
asr_model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr").to(device)
|
15 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
16 |
|
|
|
|
|
|
|
|
|
17 |
# Function to convert speech to text
|
18 |
def speech_to_text(audio_dict):
|
19 |
# Extract the audio array from the dictionary
|
@@ -33,7 +38,10 @@ def speech_to_text(audio_dict):
|
|
33 |
def text_to_speech(text):
|
34 |
inputs = processor(text=text, return_tensors="pt").input_ids.to(device)
|
35 |
with torch.no_grad():
|
36 |
-
speech = tts_model.generate_speech(
|
|
|
|
|
|
|
37 |
return speech
|
38 |
|
39 |
# Gradio demo
|
|
|
5 |
import soundfile as sf
|
6 |
import tempfile
|
7 |
import os
|
8 |
+
from datasets import load_dataset
|
9 |
|
10 |
# Check if CUDA is available, otherwise use CPU
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
15 |
asr_model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr").to(device)
|
16 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
17 |
|
18 |
+
# Load speaker embeddings
|
19 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
20 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device)
|
21 |
+
|
22 |
# Function to convert speech to text
|
23 |
def speech_to_text(audio_dict):
|
24 |
# Extract the audio array from the dictionary
|
|
|
38 |
def text_to_speech(text):
|
39 |
inputs = processor(text=text, return_tensors="pt").input_ids.to(device)
|
40 |
with torch.no_grad():
|
41 |
+
speech = tts_model.generate_speech(
|
42 |
+
inputs,
|
43 |
+
speaker_embeddings=speaker_embeddings
|
44 |
+
)
|
45 |
return speech
|
46 |
|
47 |
# Gradio demo
|