Spaces:
Sleeping
Sleeping
hashhac
commited on
Commit
·
ab25fef
1
Parent(s):
ca1dafb
added sound putputs
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech
|
5 |
from datasets import load_dataset
|
6 |
import soundfile as sf
|
7 |
import tempfile
|
@@ -10,7 +10,7 @@ import os
|
|
10 |
# Check if CUDA is available, otherwise use CPU
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
# Load Whisper for ASR
|
14 |
print("Loading ASR model...")
|
15 |
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=device)
|
16 |
|
@@ -19,6 +19,10 @@ print("Loading TTS model...")
|
|
19 |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
20 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
21 |
|
|
|
|
|
|
|
|
|
22 |
# Load speaker embeddings for TTS
|
23 |
print("Loading speaker embeddings...")
|
24 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
@@ -44,8 +48,11 @@ def text_to_speech(text):
|
|
44 |
inputs["input_ids"],
|
45 |
speaker_embeddings=speaker_embeddings
|
46 |
)
|
|
|
|
|
|
|
47 |
|
48 |
-
return
|
49 |
|
50 |
# Gradio demo
|
51 |
def demo():
|
@@ -61,32 +68,43 @@ def demo():
|
|
61 |
if audio is None:
|
62 |
return None, "No audio detected."
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
|
91 |
audio_input.change(process_audio,
|
92 |
inputs=[audio_input],
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
5 |
from datasets import load_dataset
|
6 |
import soundfile as sf
|
7 |
import tempfile
|
|
|
10 |
# Check if CUDA is available, otherwise use CPU
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
# Load Whisper for ASR
|
14 |
print("Loading ASR model...")
|
15 |
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=device)
|
16 |
|
|
|
19 |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
20 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
21 |
|
22 |
+
# Load SpeechT5 vocoder (THIS WAS MISSING)
|
23 |
+
print("Loading vocoder...")
|
24 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
25 |
+
|
26 |
# Load speaker embeddings for TTS
|
27 |
print("Loading speaker embeddings...")
|
28 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
48 |
inputs["input_ids"],
|
49 |
speaker_embeddings=speaker_embeddings
|
50 |
)
|
51 |
+
|
52 |
+
# Convert spectrogram to waveform using vocoder
|
53 |
+
waveform = vocoder(speech)
|
54 |
|
55 |
+
return waveform
|
56 |
|
57 |
# Gradio demo
|
58 |
def demo():
|
|
|
68 |
if audio is None:
|
69 |
return None, "No audio detected."
|
70 |
|
71 |
+
try:
|
72 |
+
# Get audio data
|
73 |
+
sample_rate, audio_data = audio
|
74 |
+
|
75 |
+
# Speech-to-text
|
76 |
+
transcript = speech_to_text(audio_data, sample_rate)
|
77 |
+
print(f"Transcribed: {transcript}")
|
78 |
+
|
79 |
+
# Generate response (for simplicity, echo the transcript)
|
80 |
+
response_text = transcript
|
81 |
+
print(f"Response: {response_text}")
|
82 |
+
|
83 |
+
# Text-to-speech
|
84 |
+
response_audio = text_to_speech(response_text)
|
85 |
+
|
86 |
+
# Save the response audio to a temporary file
|
87 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
88 |
+
# Ensure audio is properly scaled
|
89 |
+
audio_np = response_audio.cpu().numpy()
|
90 |
+
# Normalize audio to avoid clipping
|
91 |
+
audio_np = audio_np / (np.max(np.abs(audio_np)) + 1e-8) * 0.9
|
92 |
+
sf.write(temp_file.name, audio_np, 16000)
|
93 |
+
temp_filename = temp_file.name
|
94 |
+
|
95 |
+
# Read the audio file
|
96 |
+
audio_data, sample_rate = sf.read(temp_filename)
|
97 |
+
|
98 |
+
# Clean up the temporary file
|
99 |
+
os.unlink(temp_filename)
|
100 |
+
|
101 |
+
return (sample_rate, audio_data), f"You: {transcript}\nAssistant: {response_text}"
|
102 |
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error in process_audio: {e}")
|
105 |
+
import traceback
|
106 |
+
traceback.print_exc()
|
107 |
+
return None, f"Error processing audio: {str(e)}"
|
108 |
|
109 |
audio_input.change(process_audio,
|
110 |
inputs=[audio_input],
|