Spaces:
Sleeping
Sleeping
File size: 7,221 Bytes
a958ea7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import os
import torch
import numpy as np
import librosa
import gradio as gr
import torchaudio
import asyncio
from gradio_webrtc import (
AsyncAudioVideoStreamHandler,
WebRTC,
get_twilio_turn_credentials,
)
from pathlib import Path
# Create directories
os.makedirs("voice_samples", exist_ok=True)
# Voice presets (simple pitch and speed modifications)
VOICE_PRESETS = {
"Deep Male": {"pitch_shift": -4, "speed_factor": 0.9},
"Standard Male": {"pitch_shift": -2, "speed_factor": 0.95},
"Standard Female": {"pitch_shift": 2, "speed_factor": 1.05},
"High Female": {"pitch_shift": 4, "speed_factor": 1.1},
}
# Audio processing function
def process_audio(waveform, sampling_rate=16000):
# Convert from int16 to floating point if needed
if waveform.dtype == np.int16:
waveform = waveform / 32768.0
# Make sure input is mono
if len(waveform.shape) > 1:
waveform = librosa.to_mono(waveform.T)
# Resample to 16 kHz if needed
if sampling_rate != 16000:
waveform = librosa.resample(waveform, orig_sr=sampling_rate, target_sr=16000)
# Limit length to avoid memory issues
max_length = 16000 * 15
if len(waveform) > max_length:
waveform = waveform[:max_length]
return waveform
# Simple voice conversion using torchaudio effects
def convert_voice_simple(waveform, preset):
try:
# Convert to tensor
if not torch.is_tensor(waveform):
waveform_tensor = torch.tensor(waveform).float()
else:
waveform_tensor = waveform
# Ensure tensor is properly shaped
if waveform_tensor.dim() == 1:
waveform_tensor = waveform_tensor.unsqueeze(0)
# Apply pitch shift
pitch_shift = preset.get("pitch_shift", 0)
if pitch_shift != 0:
waveform_tensor = torchaudio.functional.pitch_shift(
waveform_tensor,
sample_rate=16000,
n_steps=pitch_shift
)
# Apply speed change
speed_factor = preset.get("speed_factor", 1.0)
if speed_factor != 1.0:
waveform_tensor = torchaudio.functional.speed(
waveform_tensor,
speed_factor
)
# Add some effects for more natural sound
# Light reverb effect
waveform_tensor = torchaudio.functional.add_reverb(
waveform_tensor,
sample_rate=16000,
reverberance=20,
room_scale=50,
wet_gain=0
)
return waveform_tensor.squeeze().numpy()
except Exception as e:
print(f"Error in voice conversion: {e}")
return waveform
class VoiceConversionHandler(AsyncAudioVideoStreamHandler):
def __init__(
self, expected_layout="mono", output_sample_rate=16000, output_frame_size=1024
) -> None:
super().__init__(
expected_layout,
output_sample_rate,
output_frame_size,
input_sample_rate=16000,
)
self.audio_queue = asyncio.Queue()
self.quit = asyncio.Event()
self.voice_preset = None
self.buffer = np.array([])
self.buffer_size = 4096 # Buffer size for processing
def copy(self) -> "VoiceConversionHandler":
return VoiceConversionHandler(
expected_layout=self.expected_layout,
output_sample_rate=self.output_sample_rate,
output_frame_size=self.output_frame_size,
)
async def receive(self, frame: tuple[int, np.ndarray]) -> None:
sample_rate, array = frame
array = array.squeeze()
# Add new audio to buffer
self.buffer = np.append(self.buffer, process_audio(array, sample_rate))
# Process when buffer is large enough
if len(self.buffer) >= self.buffer_size:
# Process audio chunk
if self.voice_preset:
preset = VOICE_PRESETS.get(self.voice_preset, VOICE_PRESETS["Standard Male"])
processed_audio = convert_voice_simple(self.buffer[:self.buffer_size], preset)
result = (processed_audio * 32767).astype(np.int16)
else:
# Return original if no voice preset is selected
result = (self.buffer[:self.buffer_size] * 32767).astype(np.int16)
self.audio_queue.put_nowait((16000, result))
# Keep remainder
self.buffer = self.buffer[self.buffer_size:]
async def emit(self):
if not self.args_set.is_set():
await self.wait_for_args()
# Get selected voice preset
if self.latest_args and len(self.latest_args) > 1:
self.voice_preset = self.latest_args[1]
# If queue is empty, return silence
if self.audio_queue.empty():
return (16000, np.zeros(self.output_frame_size, dtype=np.int16))
return await self.audio_queue.get()
def shutdown(self) -> None:
self.quit.set()
self.args_set.clear()
self.quit.clear()
# CSS for styling
css = """
.container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
.header {
text-align: center;
margin-bottom: 20px;
}
.voice-controls {
padding: 15px;
border-radius: 8px;
background-color: #f5f5f5;
margin-bottom: 20px;
}
"""
# Main application
def main():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
<div class="header">
<h1>Real-time Voice Conversion</h1>
<p>Speak into your microphone to convert your voice in real-time using audio effects.</p>
</div>
"""
)
with gr.Row(equal_height=True):
with gr.Column():
webrtc = WebRTC(
label="Voice Chat",
modality="audio",
mode="send-receive",
rtc_configuration=get_twilio_turn_credentials(),
pulse_color="rgb(35, 157, 225)",
)
with gr.Column(elem_classes="voice-controls"):
voice_preset = gr.Radio(
choices=list(VOICE_PRESETS.keys()),
value="Standard Male",
label="Target Voice"
)
gr.Markdown(
"""
### How to use:
1. Allow microphone access
2. Select your target voice style
3. Click the microphone button and start speaking
4. Your voice will be converted in real-time
Note: This version uses basic audio effects without SentencePiece.
"""
)
webrtc.stream(
VoiceConversionHandler(),
inputs=[webrtc, voice_preset],
outputs=[webrtc],
concurrency_limit=2,
)
return demo
if __name__ == "__main__":
demo = main()
demo.launch() |