File size: 7,229 Bytes
e724e7e
 
 
a958ea7
e724e7e
 
7afe31a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e724e7e
7afe31a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e724e7e
7afe31a
 
 
 
 
 
 
 
 
 
e724e7e
7afe31a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e724e7e
 
 
 
 
7afe31a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from fastrtc import (
    ReplyOnPause, AdditionalOutputs, Stream,
    audio_to_bytes, aggregate_bytes_to_16bit
)
import gradio as gr
import numpy as np
import torch
import os
from transformers import (
    AutoModelForSpeechSeq2Seq, 
    AutoProcessor, 
    pipeline,
    AutoTokenizer, 
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM
)
from datasets import load_dataset
import scipy

# Check if CUDA is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Step 1: Audio transcription with Whisper
def load_asr_model():
    model_id = "openai/whisper-small"  # Smaller version that's more efficient
    
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_id, 
        torch_dtype=torch_dtype,
        low_cpu_mem_usage=True,
        use_safetensors=True
    )
    model.to(device)
    
    processor = AutoProcessor.from_pretrained(model_id)
    
    return pipeline(
        "automatic-speech-recognition",
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        max_new_tokens=128,
        chunk_length_s=30,
        batch_size=16,
        return_timestamps=False,
        torch_dtype=torch_dtype,
        device=device,
    )

# Step 2: Text generation with a smaller LLM
def load_llm_model():
    model_id = "facebook/opt-1.3b"  # A smaller language model
    
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch_dtype,
        low_cpu_mem_usage=True
    )
    model.to(device)
    
    return model, tokenizer

# Step 3: Text-to-Speech with a free model
def load_tts_model():
    model_id = "microsoft/speecht5_tts"
    processor = AutoProcessor.from_pretrained(model_id)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
    model.to(device)
    
    # Load vocoder for waveform generation
    vocoder_id = "microsoft/speecht5_hifigan"
    vocoder = AutoModelForCausalLM.from_pretrained(vocoder_id)
    vocoder.to(device)
    
    # Load speaker embeddings
    embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
    speaker_embeddings = torch.tensor(embeddings_dataset[7]["xvector"]).unsqueeze(0)
    
    return model, processor, vocoder, speaker_embeddings

# Initialize all models
print("Loading ASR model...")
asr_pipeline = load_asr_model()

print("Loading LLM model...")
llm_model, llm_tokenizer = load_llm_model()

print("Loading TTS model...")
tts_model, tts_processor, tts_vocoder, speaker_embeddings = load_tts_model()

# Chat history management
chat_history = []

def generate_response(prompt):
    # If chat history is empty, add a system message
    if not chat_history:
        chat_history.append({"role": "system", "content": "You are a helpful, friendly AI assistant. Keep your responses concise and conversational."})
    
    # Add user message to history
    chat_history.append({"role": "user", "content": prompt})
    
    # Prepare input for the model
    full_prompt = ""
    for message in chat_history:
        if message["role"] == "system":
            full_prompt += f"System: {message['content']}\n"
        elif message["role"] == "user":
            full_prompt += f"User: {message['content']}\n"
        elif message["role"] == "assistant":
            full_prompt += f"Assistant: {message['content']}\n"
    
    full_prompt += "Assistant: "
    
    # Generate response
    inputs = llm_tokenizer(full_prompt, return_tensors="pt").to(device)
    with torch.no_grad():
        output = llm_model.generate(
            **inputs, 
            max_new_tokens=128,
            do_sample=True,
            temperature=0.7,
            top_p=0.9
        )
    
    response_text = llm_tokenizer.decode(output[0], skip_special_tokens=True)
    response_text = response_text.split("Assistant: ")[-1].strip()
    
    # Add assistant response to history
    chat_history.append({"role": "assistant", "content": response_text})
    
    # Keep history at a reasonable size
    if len(chat_history) > 10:
        # Keep system message and last 9 exchanges
        chat_history.pop(1)
    
    return response_text

def text_to_speech(text):
    # Prepare inputs
    inputs = tts_processor(text=text, return_tensors="pt")
    
    # Add speaker embeddings
    inputs["speaker_embeddings"] = speaker_embeddings.to(device)
    
    # Generate speech
    with torch.no_grad():
        speech = tts_model.generate_speech(
            inputs["input_ids"].to(device), 
            speaker_embeddings.to(device)
        )
        
    # Convert to waveform using vocoder
    with torch.no_grad():
        waveform = tts_vocoder(speech)
    
    # Convert to numpy array
    audio_array = waveform.cpu().numpy().squeeze()
    
    # Normalize and convert to int16
    audio_array = (audio_array / np.max(np.abs(audio_array)) * 32767).astype(np.int16)
    
    # Reshape for fastrtc
    audio_array = audio_array.reshape(1, -1)
    
    return (24000, audio_array)  # Using 24kHz sample rate

def response(audio: tuple[int, np.ndarray]):
    # Step 1: Speech-to-Text
    transcript = asr_pipeline({"sampling_rate": audio[0], "raw": audio[1].flatten()})
    prompt = transcript["text"]
    
    # Step 2: Generate text response
    response_text = generate_response(prompt)
    
    # Step 3: Text-to-Speech
    sample_rate, audio_array = text_to_speech(response_text)
    
    # Convert to expected format
    chunk_size = 4800  # 200ms chunks at 24kHz
    for i in range(0, audio_array.shape[1], chunk_size):
        chunk = audio_array[:, i:i+chunk_size]
        if chunk.size > 0:  # Ensure we don't yield empty chunks
            yield (sample_rate, chunk)

stream = Stream(
    modality="audio",
    mode="send-receive",
    handler=ReplyOnPause(response),
)

# For testing without WebRTC
def demo():
    with gr.Blocks() as demo:
        gr.Markdown("# Local Voice Chatbot")
        audio_input = gr.Audio(sources=["microphone"], type="numpy")
        audio_output = gr.Audio()
        
        def process_audio(audio):
            if audio is None:
                return None
            
            sample_rate, audio_array = audio
            transcript = asr_pipeline({"sampling_rate": sample_rate, "raw": audio_array.flatten()})
            prompt = transcript["text"]
            print(f"Transcribed: {prompt}")
            
            response_text = generate_response(prompt)
            print(f"Response: {response_text}")
            
            sample_rate, audio_array = text_to_speech(response_text)
            return (sample_rate, audio_array[0])
        
        audio_input.change(process_audio, inputs=[audio_input], outputs=[audio_output])
    
    demo.launch()

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--demo", action="store_true", help="Run Gradio demo instead of WebRTC")
    args = parser.parse_args()
    
    if args.demo:
        demo()
    else:
        # For running with FastRTC
        # You would need to add your FastRTC server code here
        pass