File size: 8,529 Bytes
e724e7e
 
 
a958ea7
e724e7e
 
7afe31a
 
289ad8b
7afe31a
 
 
 
 
289ad8b
7afe31a
289ad8b
 
7afe31a
 
 
 
 
 
 
289ad8b
7afe31a
 
 
 
 
 
e724e7e
7afe31a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e724e7e
7afe31a
 
 
289ad8b
7afe31a
 
7dc0ac9
fe65571
7dc0ac9
fe65571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dc0ac9
7afe31a
 
 
 
289ad8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519f37a
289ad8b
 
519f37a
289ad8b
519f37a
289ad8b
7afe31a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dc0ac9
fe65571
 
 
 
 
 
 
7dc0ac9
 
 
fe65571
bd4a44f
7dc0ac9
7afe31a
 
7dc0ac9
fe65571
7afe31a
 
 
fe65571
7afe31a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289ad8b
 
 
 
 
 
 
 
 
 
 
 
7afe31a
289ad8b
7afe31a
 
 
289ad8b
7afe31a
289ad8b
 
7afe31a
289ad8b
 
7afe31a
 
 
 
e724e7e
 
 
 
 
7afe31a
 
 
 
 
 
 
 
 
 
 
 
 
 
289ad8b
 
 
 
 
 
 
 
 
7afe31a
 
 
 
 
 
289ad8b
7afe31a
 
 
 
 
 
 
 
 
 
 
289ad8b
8d9d85d
289ad8b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from fastrtc import (
    ReplyOnPause, AdditionalOutputs, Stream,
    audio_to_bytes, aggregate_bytes_to_16bit
)
import gradio as gr
import numpy as np
import torch
import os
import tempfile
from transformers import (
    AutoModelForSpeechSeq2Seq, 
    AutoProcessor, 
    pipeline,
    AutoTokenizer, 
    AutoModelForCausalLM
)
from gtts import gTTS
from scipy.io import wavfile

# Check if CUDA is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Step 1: Audio transcription with Whisper
def load_asr_model():
    model_id = "openai/whisper-small"
    
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_id, 
        torch_dtype=torch_dtype,
        low_cpu_mem_usage=True,
        use_safetensors=True
    )
    model.to(device)
    
    processor = AutoProcessor.from_pretrained(model_id)
    
    return pipeline(
        "automatic-speech-recognition",
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        max_new_tokens=128,
        chunk_length_s=30,
        batch_size=16,
        return_timestamps=False,
        torch_dtype=torch_dtype,
        device=device,
    )

# Step 2: Text generation with a smaller LLM
def load_llm_model():
    model_id = "facebook/opt-1.3b"
    
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    
    # Ensure pad token is set to something different than EOS token
    if tokenizer.pad_token is None:
        # Use a different special token as padding token
        tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        # Resize the token embeddings since we added a new token
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch_dtype,
            low_cpu_mem_usage=True
        )
        model.resize_token_embeddings(len(tokenizer))
    else:
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch_dtype,
            low_cpu_mem_usage=True
        )
    
    model.to(device)
    
    return model, tokenizer

# Step 3: Text-to-Speech with gTTS (Google Text-to-Speech)
def gtts_text_to_speech(text):
    # Create a temporary file
    with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as f:
        tmp_filename = f.name
    
    # Use gTTS to convert text to speech
    tts = gTTS(text=text, lang='en', slow=False)
    
    # Save as MP3 first (gTTS only outputs MP3)
    mp3_filename = tmp_filename.replace('.wav', '.mp3')
    tts.save(mp3_filename)
    
    # Convert MP3 to WAV using FFmpeg if available, otherwise use a fallback
    try:
        import subprocess
        subprocess.run(['ffmpeg', '-i', mp3_filename, '-acodec', 'pcm_s16le', '-ar', '24000', '-ac', '1', tmp_filename], 
                       stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    except (ImportError, FileNotFoundError):
        # Fallback if FFmpeg is not available
        from pydub import AudioSegment
        sound = AudioSegment.from_mp3(mp3_filename)
        sound = sound.set_frame_rate(24000).set_channels(1)
        sound.export(tmp_filename, format="wav")
    
    # Read the WAV file
    sample_rate, audio_data = wavfile.read(tmp_filename)
    
    # Clean up temporary files
    os.remove(mp3_filename)
    os.remove(tmp_filename)
    
    # Convert to expected format
    audio_data = audio_data.reshape(1, -1).astype(np.int16)
    
    return (sample_rate, audio_data)

# Initialize models
print("Loading ASR model...")
asr_pipeline = load_asr_model()

print("Loading LLM model...")
llm_model, llm_tokenizer = load_llm_model()

# Chat history management
chat_history = []

def generate_response(prompt):
    # If chat history is empty, add a system message
    if not chat_history:
        chat_history.append({"role": "system", "content": "You are a helpful, friendly AI assistant. Keep your responses concise and conversational."})
    
    # Add user message to history
    chat_history.append({"role": "user", "content": prompt})
    
    # Prepare input for the model
    full_prompt = ""
    for message in chat_history:
        if message["role"] == "system":
            full_prompt += f"System: {message['content']}\n"
        elif message["role"] == "user":
            full_prompt += f"User: {message['content']}\n"
        elif message["role"] == "assistant":
            full_prompt += f"Assistant: {message['content']}\n"
    
    full_prompt += "Assistant: "
    
    # Generate response with proper attention mask
    # Let the tokenizer create the attention mask automatically
    tokenized_inputs = llm_tokenizer(
        full_prompt, 
        return_tensors="pt", 
        padding=True,
        return_attention_mask=True  # This generates the proper attention mask
    )
    
    # Move to device
    input_ids = tokenized_inputs["input_ids"].to(device)
    attention_mask = tokenized_inputs["attention_mask"].to(device)
    
    # Generate response
    with torch.no_grad():
        output = llm_model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,  # Use the tokenizer's attention mask
            max_new_tokens=128,
            do_sample=True,
            temperature=0.7,
            top_p=0.9
        )
    
    response_text = llm_tokenizer.decode(output[0], skip_special_tokens=True)
    response_text = response_text.split("Assistant: ")[-1].strip()
    
    # Add assistant response to history
    chat_history.append({"role": "assistant", "content": response_text})
    
    # Keep history at a reasonable size
    if len(chat_history) > 10:
        # Keep system message and last 9 exchanges
        chat_history.pop(1)
    
    return response_text

def response(audio: tuple[int, np.ndarray]):
    # Step 1: Convert audio to float32 before passing to ASR
    sample_rate, audio_data = audio
    
    # Convert int16 audio to float32
    audio_float32 = audio_data.flatten().astype(np.float32) / 32768.0  # Normalize to [-1.0, 1.0]
    
    # Speech-to-Text with correct data type
    transcript = asr_pipeline({
        "sampling_rate": sample_rate, 
        "raw": audio_float32
    })
    
    prompt = transcript["text"]
    print(f"Transcribed: {prompt}")
    
    # Step 2: Generate text response
    response_text = generate_response(prompt)
    print(f"Response: {response_text}")
    
    # Step 3: Text-to-Speech using gTTS
    sample_rate, audio_array = gtts_text_to_speech(response_text)
    
    # Convert to expected format and yield chunks
    chunk_size = int(sample_rate * 0.2)  # 200ms chunks
    for i in range(0, audio_array.shape[1], chunk_size):
        chunk = audio_array[:, i:i+chunk_size]
        if chunk.size > 0:  # Ensure we don't yield empty chunks
            yield (sample_rate, chunk)

stream = Stream(
    modality="audio",
    mode="send-receive",
    handler=ReplyOnPause(response),
)

# For testing without WebRTC
def demo():
    with gr.Blocks() as demo:
        gr.Markdown("# Local Voice Chatbot")
        audio_input = gr.Audio(sources=["microphone"], type="numpy")
        audio_output = gr.Audio()
        
        def process_audio(audio):
            if audio is None:
                return None
            
            sample_rate, audio_array = audio
            
            # Convert to float32 for ASR
            audio_float32 = audio_array.flatten().astype(np.float32) / 32768.0
            
            transcript = asr_pipeline({
                "sampling_rate": sample_rate, 
                "raw": audio_float32
            })
            
            prompt = transcript["text"]
            print(f"Transcribed: {prompt}")
            
            response_text = generate_response(prompt)
            print(f"Response: {response_text}")
            
            sample_rate, audio_array = gtts_text_to_speech(response_text)
            return (sample_rate, audio_array[0])
        
        audio_input.change(process_audio, inputs=[audio_input], outputs=[audio_output])
    
    demo.launch()

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--demo", action="store_true", help="Run Gradio demo instead of WebRTC")
    args = parser.parse_args()
    # hugging face issues
    demo()
    
    # if args.demo:
    #     demo()
    # else:
    #     # For running with FastRTC
    #     # You would need to add your FastRTC server code here
    #     pass