Spaces:
Sleeping
Sleeping
File size: 8,529 Bytes
e724e7e a958ea7 e724e7e 7afe31a 289ad8b 7afe31a 289ad8b 7afe31a 289ad8b 7afe31a 289ad8b 7afe31a e724e7e 7afe31a e724e7e 7afe31a 289ad8b 7afe31a 7dc0ac9 fe65571 7dc0ac9 fe65571 7dc0ac9 7afe31a 289ad8b 519f37a 289ad8b 519f37a 289ad8b 519f37a 289ad8b 7afe31a 7dc0ac9 fe65571 7dc0ac9 fe65571 bd4a44f 7dc0ac9 7afe31a 7dc0ac9 fe65571 7afe31a fe65571 7afe31a 289ad8b 7afe31a 289ad8b 7afe31a 289ad8b 7afe31a 289ad8b 7afe31a 289ad8b 7afe31a e724e7e 7afe31a 289ad8b 7afe31a 289ad8b 7afe31a 289ad8b 8d9d85d 289ad8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
from fastrtc import (
ReplyOnPause, AdditionalOutputs, Stream,
audio_to_bytes, aggregate_bytes_to_16bit
)
import gradio as gr
import numpy as np
import torch
import os
import tempfile
from transformers import (
AutoModelForSpeechSeq2Seq,
AutoProcessor,
pipeline,
AutoTokenizer,
AutoModelForCausalLM
)
from gtts import gTTS
from scipy.io import wavfile
# Check if CUDA is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Step 1: Audio transcription with Whisper
def load_asr_model():
model_id = "openai/whisper-small"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
return pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=False,
torch_dtype=torch_dtype,
device=device,
)
# Step 2: Text generation with a smaller LLM
def load_llm_model():
model_id = "facebook/opt-1.3b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Ensure pad token is set to something different than EOS token
if tokenizer.pad_token is None:
# Use a different special token as padding token
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# Resize the token embeddings since we added a new token
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True
)
model.resize_token_embeddings(len(tokenizer))
else:
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True
)
model.to(device)
return model, tokenizer
# Step 3: Text-to-Speech with gTTS (Google Text-to-Speech)
def gtts_text_to_speech(text):
# Create a temporary file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as f:
tmp_filename = f.name
# Use gTTS to convert text to speech
tts = gTTS(text=text, lang='en', slow=False)
# Save as MP3 first (gTTS only outputs MP3)
mp3_filename = tmp_filename.replace('.wav', '.mp3')
tts.save(mp3_filename)
# Convert MP3 to WAV using FFmpeg if available, otherwise use a fallback
try:
import subprocess
subprocess.run(['ffmpeg', '-i', mp3_filename, '-acodec', 'pcm_s16le', '-ar', '24000', '-ac', '1', tmp_filename],
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except (ImportError, FileNotFoundError):
# Fallback if FFmpeg is not available
from pydub import AudioSegment
sound = AudioSegment.from_mp3(mp3_filename)
sound = sound.set_frame_rate(24000).set_channels(1)
sound.export(tmp_filename, format="wav")
# Read the WAV file
sample_rate, audio_data = wavfile.read(tmp_filename)
# Clean up temporary files
os.remove(mp3_filename)
os.remove(tmp_filename)
# Convert to expected format
audio_data = audio_data.reshape(1, -1).astype(np.int16)
return (sample_rate, audio_data)
# Initialize models
print("Loading ASR model...")
asr_pipeline = load_asr_model()
print("Loading LLM model...")
llm_model, llm_tokenizer = load_llm_model()
# Chat history management
chat_history = []
def generate_response(prompt):
# If chat history is empty, add a system message
if not chat_history:
chat_history.append({"role": "system", "content": "You are a helpful, friendly AI assistant. Keep your responses concise and conversational."})
# Add user message to history
chat_history.append({"role": "user", "content": prompt})
# Prepare input for the model
full_prompt = ""
for message in chat_history:
if message["role"] == "system":
full_prompt += f"System: {message['content']}\n"
elif message["role"] == "user":
full_prompt += f"User: {message['content']}\n"
elif message["role"] == "assistant":
full_prompt += f"Assistant: {message['content']}\n"
full_prompt += "Assistant: "
# Generate response with proper attention mask
# Let the tokenizer create the attention mask automatically
tokenized_inputs = llm_tokenizer(
full_prompt,
return_tensors="pt",
padding=True,
return_attention_mask=True # This generates the proper attention mask
)
# Move to device
input_ids = tokenized_inputs["input_ids"].to(device)
attention_mask = tokenized_inputs["attention_mask"].to(device)
# Generate response
with torch.no_grad():
output = llm_model.generate(
input_ids=input_ids,
attention_mask=attention_mask, # Use the tokenizer's attention mask
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.9
)
response_text = llm_tokenizer.decode(output[0], skip_special_tokens=True)
response_text = response_text.split("Assistant: ")[-1].strip()
# Add assistant response to history
chat_history.append({"role": "assistant", "content": response_text})
# Keep history at a reasonable size
if len(chat_history) > 10:
# Keep system message and last 9 exchanges
chat_history.pop(1)
return response_text
def response(audio: tuple[int, np.ndarray]):
# Step 1: Convert audio to float32 before passing to ASR
sample_rate, audio_data = audio
# Convert int16 audio to float32
audio_float32 = audio_data.flatten().astype(np.float32) / 32768.0 # Normalize to [-1.0, 1.0]
# Speech-to-Text with correct data type
transcript = asr_pipeline({
"sampling_rate": sample_rate,
"raw": audio_float32
})
prompt = transcript["text"]
print(f"Transcribed: {prompt}")
# Step 2: Generate text response
response_text = generate_response(prompt)
print(f"Response: {response_text}")
# Step 3: Text-to-Speech using gTTS
sample_rate, audio_array = gtts_text_to_speech(response_text)
# Convert to expected format and yield chunks
chunk_size = int(sample_rate * 0.2) # 200ms chunks
for i in range(0, audio_array.shape[1], chunk_size):
chunk = audio_array[:, i:i+chunk_size]
if chunk.size > 0: # Ensure we don't yield empty chunks
yield (sample_rate, chunk)
stream = Stream(
modality="audio",
mode="send-receive",
handler=ReplyOnPause(response),
)
# For testing without WebRTC
def demo():
with gr.Blocks() as demo:
gr.Markdown("# Local Voice Chatbot")
audio_input = gr.Audio(sources=["microphone"], type="numpy")
audio_output = gr.Audio()
def process_audio(audio):
if audio is None:
return None
sample_rate, audio_array = audio
# Convert to float32 for ASR
audio_float32 = audio_array.flatten().astype(np.float32) / 32768.0
transcript = asr_pipeline({
"sampling_rate": sample_rate,
"raw": audio_float32
})
prompt = transcript["text"]
print(f"Transcribed: {prompt}")
response_text = generate_response(prompt)
print(f"Response: {response_text}")
sample_rate, audio_array = gtts_text_to_speech(response_text)
return (sample_rate, audio_array[0])
audio_input.change(process_audio, inputs=[audio_input], outputs=[audio_output])
demo.launch()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--demo", action="store_true", help="Run Gradio demo instead of WebRTC")
args = parser.parse_args()
# hugging face issues
demo()
# if args.demo:
# demo()
# else:
# # For running with FastRTC
# # You would need to add your FastRTC server code here
# pass |