Spaces:
Sleeping
Sleeping
hashhac
commited on
Commit
·
de7876c
1
Parent(s):
fe65571
wave running
Browse files
app.py
CHANGED
@@ -54,10 +54,15 @@ def load_llm_model():
|
|
54 |
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
56 |
|
57 |
-
#
|
58 |
-
|
|
|
|
|
|
|
59 |
# Use a different special token as padding token
|
60 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
|
|
|
|
61 |
# Resize the token embeddings since we added a new token
|
62 |
model = AutoModelForCausalLM.from_pretrained(
|
63 |
model_id,
|
@@ -66,6 +71,7 @@ def load_llm_model():
|
|
66 |
)
|
67 |
model.resize_token_embeddings(len(tokenizer))
|
68 |
else:
|
|
|
69 |
model = AutoModelForCausalLM.from_pretrained(
|
70 |
model_id,
|
71 |
torch_dtype=torch_dtype,
|
@@ -78,40 +84,73 @@ def load_llm_model():
|
|
78 |
|
79 |
# Step 3: Text-to-Speech with gTTS (Google Text-to-Speech)
|
80 |
def gtts_text_to_speech(text):
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
# Use gTTS to convert text to speech
|
86 |
-
tts = gTTS(text=text, lang='en', slow=False)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
tts.save(mp3_filename)
|
91 |
|
92 |
-
# Convert MP3 to WAV using FFmpeg if available, otherwise use a fallback
|
93 |
try:
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
#
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
# Initialize models
|
117 |
print("Loading ASR model...")
|
@@ -144,12 +183,11 @@ def generate_response(prompt):
|
|
144 |
full_prompt += "Assistant: "
|
145 |
|
146 |
# Generate response with proper attention mask
|
147 |
-
# Let the tokenizer create the attention mask automatically
|
148 |
tokenized_inputs = llm_tokenizer(
|
149 |
full_prompt,
|
150 |
return_tensors="pt",
|
151 |
padding=True,
|
152 |
-
return_attention_mask=True
|
153 |
)
|
154 |
|
155 |
# Move to device
|
@@ -160,7 +198,7 @@ def generate_response(prompt):
|
|
160 |
with torch.no_grad():
|
161 |
output = llm_model.generate(
|
162 |
input_ids=input_ids,
|
163 |
-
attention_mask=attention_mask,
|
164 |
max_new_tokens=128,
|
165 |
do_sample=True,
|
166 |
temperature=0.7,
|
|
|
54 |
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
56 |
|
57 |
+
# Check if pad_token is None or if pad_token is the same as eos_token
|
58 |
+
needs_pad_token = (tokenizer.pad_token is None or
|
59 |
+
(tokenizer.pad_token == tokenizer.eos_token))
|
60 |
+
|
61 |
+
if needs_pad_token:
|
62 |
# Use a different special token as padding token
|
63 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
64 |
+
print(f"Changed pad token from {tokenizer.pad_token} to [PAD], different from EOS token: {tokenizer.eos_token}")
|
65 |
+
|
66 |
# Resize the token embeddings since we added a new token
|
67 |
model = AutoModelForCausalLM.from_pretrained(
|
68 |
model_id,
|
|
|
71 |
)
|
72 |
model.resize_token_embeddings(len(tokenizer))
|
73 |
else:
|
74 |
+
print(f"Pad token ({tokenizer.pad_token}) is already different from EOS token ({tokenizer.eos_token})")
|
75 |
model = AutoModelForCausalLM.from_pretrained(
|
76 |
model_id,
|
77 |
torch_dtype=torch_dtype,
|
|
|
84 |
|
85 |
# Step 3: Text-to-Speech with gTTS (Google Text-to-Speech)
|
86 |
def gtts_text_to_speech(text):
|
87 |
+
"""Convert text to speech using gTTS and ensure proper WAV format."""
|
88 |
+
# Create temporary files
|
89 |
+
mp3_fd, mp3_filename = tempfile.mkstemp(suffix='.mp3')
|
90 |
+
os.close(mp3_fd)
|
|
|
|
|
91 |
|
92 |
+
wav_fd, wav_filename = tempfile.mkstemp(suffix='.wav')
|
93 |
+
os.close(wav_fd)
|
|
|
94 |
|
|
|
95 |
try:
|
96 |
+
# Use gTTS to convert text to speech
|
97 |
+
tts = gTTS(text=text, lang='en', slow=False)
|
98 |
+
tts.save(mp3_filename)
|
99 |
+
|
100 |
+
# Convert MP3 to WAV - preferred method with ffmpeg
|
101 |
+
try:
|
102 |
+
import subprocess
|
103 |
+
result = subprocess.run(
|
104 |
+
['ffmpeg', '-y', '-i', mp3_filename, '-acodec', 'pcm_s16le', '-ar', '24000', '-ac', '1', wav_filename],
|
105 |
+
stdout=subprocess.PIPE, stderr=subprocess.PIPE,
|
106 |
+
check=True
|
107 |
+
)
|
108 |
+
|
109 |
+
except (ImportError, FileNotFoundError, subprocess.CalledProcessError):
|
110 |
+
# Fallback if FFmpeg is not available or fails
|
111 |
+
from pydub import AudioSegment
|
112 |
+
sound = AudioSegment.from_mp3(mp3_filename)
|
113 |
+
sound = sound.set_frame_rate(24000).set_channels(1)
|
114 |
+
sound.export(wav_filename, format="wav")
|
115 |
+
|
116 |
+
# Verify the WAV file exists and has size
|
117 |
+
if os.path.exists(wav_filename) and os.path.getsize(wav_filename) > 0:
|
118 |
+
# Read the WAV file with scipy
|
119 |
+
try:
|
120 |
+
sample_rate, audio_data = wavfile.read(wav_filename)
|
121 |
+
# Convert to expected format
|
122 |
+
audio_data = audio_data.reshape(1, -1).astype(np.int16)
|
123 |
+
return (sample_rate, audio_data)
|
124 |
+
except Exception as e:
|
125 |
+
print(f"Error reading WAV file with scipy: {e}")
|
126 |
+
# Try alternative approach with pydub
|
127 |
+
try:
|
128 |
+
from pydub import AudioSegment
|
129 |
+
sound = AudioSegment.from_file(wav_filename, format="wav")
|
130 |
+
audio_data = np.array(sound.get_array_of_samples(), dtype=np.int16)
|
131 |
+
audio_data = audio_data.reshape(1, -1)
|
132 |
+
return (sound.frame_rate, audio_data)
|
133 |
+
except Exception as e2:
|
134 |
+
print(f"Error with pydub fallback: {e2}")
|
135 |
+
|
136 |
+
# If all else fails, generate a simple tone
|
137 |
+
print("Falling back to synthetic audio tone")
|
138 |
+
sample_rate = 24000
|
139 |
+
duration_sec = len(text) * 0.1 # Rough estimate of speech duration
|
140 |
+
tone_length = int(sample_rate * duration_sec)
|
141 |
+
audio_data = np.sin(2 * np.pi * np.arange(tone_length) * 440 / sample_rate)
|
142 |
+
audio_data = (audio_data * 32767).astype(np.int16)
|
143 |
+
audio_data = audio_data.reshape(1, -1)
|
144 |
+
return (sample_rate, audio_data)
|
145 |
+
|
146 |
+
finally:
|
147 |
+
# Clean up temporary files
|
148 |
+
for filename in [mp3_filename, wav_filename]:
|
149 |
+
try:
|
150 |
+
if os.path.exists(filename):
|
151 |
+
os.remove(filename)
|
152 |
+
except:
|
153 |
+
pass
|
154 |
|
155 |
# Initialize models
|
156 |
print("Loading ASR model...")
|
|
|
183 |
full_prompt += "Assistant: "
|
184 |
|
185 |
# Generate response with proper attention mask
|
|
|
186 |
tokenized_inputs = llm_tokenizer(
|
187 |
full_prompt,
|
188 |
return_tensors="pt",
|
189 |
padding=True,
|
190 |
+
return_attention_mask=True
|
191 |
)
|
192 |
|
193 |
# Move to device
|
|
|
198 |
with torch.no_grad():
|
199 |
output = llm_model.generate(
|
200 |
input_ids=input_ids,
|
201 |
+
attention_mask=attention_mask,
|
202 |
max_new_tokens=128,
|
203 |
do_sample=True,
|
204 |
temperature=0.7,
|