testing / app.py
bobpopboom's picture
ok can i still see xD
0b2dc4c verified
raw
history blame
3.11 kB
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
model_id = "thrishala/mental_health_chatbot"
try:
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cpu",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
max_memory={"cpu": "15GB"},
offload_folder="offload",
)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.model_max_length = 512 # Set maximum length
# ok this is just to slow with pipe i wish it was faster. Si were ren=moving pipe in favor of local model
# pipe = pipeline(
# "text-generation",
# model=model,
# tokenizer=tokenizer,
# torch_dtype=torch.float16,
# num_return_sequences=1,
# do_sample=False,
# truncation=True,
# max_new_tokens=128
# )
except Exception as e:
print(f"Error loading model: {e}")
exit()
def generate_text(prompt, max_new_tokens=128):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) #Move input to the same device as the model
with torch.no_grad(): #Disable gradients during inference
output = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False, # Or True for sampling
eos_token_id=tokenizer.eos_token_id, # Use EOS token to stop generation
)[0]["generated_text"]
# Extract only the new assistant response after the last Assistant: in the prompt
bot_response = response[len(prompt):].split("User:")[0].strip() # Take text after prompt and before next User
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
def respond(
message,
history,
system_message,
max_tokens,
):
# Construct the prompt with clear separation
prompt = f"{system_message}\n"
for user_msg, bot_msg in history:
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
prompt += f"User: {message}\nAssistant:"
try:
# response = pipe(
# prompt,
# max_new_tokens=max_tokens,
# do_sample=False,
# eos_token_id=tokenizer.eos_token_id, # Use EOS token to stop generation
# )[0]["generated_text"]
# Extract only the new assistant response after the last Assistant: in the prompt
bot_response = generate_text(prompt, max_tokens)
yield bot_response
except Exception as e:
print(f"Error during generation: {e}")
yield "An error occurred."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly and helpful mental health chatbot.",
label="System message",
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
],
)
if __name__ == "__main__":
demo.launch()