Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
import torch | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
model_id = "thrishala/mental_health_chatbot" | |
try: | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="cpu", | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
max_memory={"cpu": "15GB"}, | |
offload_folder="offload", | |
) | |
model.to(device) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.model_max_length = 512 # Set maximum length | |
# ok this is just to slow with pipe i wish it was faster. Si were ren=moving pipe in favor of local model | |
# pipe = pipeline( | |
# "text-generation", | |
# model=model, | |
# tokenizer=tokenizer, | |
# torch_dtype=torch.float16, | |
# num_return_sequences=1, | |
# do_sample=False, | |
# truncation=True, | |
# max_new_tokens=128 | |
# ) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
exit() | |
def generate_text(prompt, max_new_tokens=128): | |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) #Move input to the same device as the model | |
with torch.no_grad(): #Disable gradients during inference | |
output = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=False, # Or True for sampling | |
eos_token_id=tokenizer.eos_token_id, # Use EOS token to stop generation | |
)[0]["generated_text"] | |
# Extract only the new assistant response after the last Assistant: in the prompt | |
bot_response = response[len(prompt):].split("User:")[0].strip() # Take text after prompt and before next User | |
) | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
def respond( | |
message, | |
history, | |
system_message, | |
max_tokens, | |
): | |
# Construct the prompt with clear separation | |
prompt = f"{system_message}\n" | |
for user_msg, bot_msg in history: | |
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" | |
prompt += f"User: {message}\nAssistant:" | |
try: | |
# response = pipe( | |
# prompt, | |
# max_new_tokens=max_tokens, | |
# do_sample=False, | |
# eos_token_id=tokenizer.eos_token_id, # Use EOS token to stop generation | |
# )[0]["generated_text"] | |
# Extract only the new assistant response after the last Assistant: in the prompt | |
bot_response = generate_text(prompt, max_tokens) | |
yield bot_response | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
yield "An error occurred." | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly and helpful mental health chatbot.", | |
label="System message", | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |