testing / app.py
bobpopboom's picture
Update app.py
c2d3107 verified
raw
history blame
2.97 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
model_id = "thrishala/mental_health_chatbot"
try:
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
max_memory={device: "15GB"},
offload_folder="offload",
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.model_max_length = 512
dummy_input = tokenizer("This is a test.", return_tensors="pt").to(model.device)
model.generate(input_ids=dummy_input.input_ids, return_dict=True) # Dummy call
except Exception as e:
print(f"Error loading model: {e}")
exit()
def generate_text(prompt, max_new_tokens=128):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False,
eos_token_id=tokenizer.eos_token_id,
return_dict=True, # Explicitly set return_dict=True
)
generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True) # Decode from sequences
return generated_text
def generate_text_streaming(prompt, max_new_tokens=128):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
for i in range(max_new_tokens):
output = model.generate(
input_ids=input_ids,
max_new_tokens=1,
do_sample=False,
eos_token_id=tokenizer.eos_token_id,
return_dict=True,
output_scores=True,
)
generated_token = tokenizer.decode(output.logits[0][-1].argmax(), skip_special_tokens=True)
yield generated_token
input_ids = torch.cat([input_ids, output.sequences[:, -1:]], dim=-1)
if output.sequences[0][-1] == tokenizer.eos_token_id:
break
def respond(message, history, system_message, max_tokens):
prompt = f"{system_message}\n"
for user_msg, bot_msg in history:
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
prompt += f"User: {message}\nAssistant:"
try:
for token in generate_text_streaming(prompt, max_tokens):
yield token # Yield each token individually
except Exception as e:
print(f"Error during generation: {e}")
yield "An error occurred."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly and helpful mental health chatbot.",
label="System message",
),
gr.Slider(minimum=1, maximum=128, value=32, step=1, label="Max new tokens"),
],
)
if __name__ == "__main__":
demo.launch()