Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
model_id = "thrishala/mental_health_chatbot"
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
max_tokens,
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
yield response
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(
|
|
|
|
|
|
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
gr.Slider(
|
@@ -59,6 +60,5 @@ demo = gr.ChatInterface(
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
|
|
|
|
|
|
|
|
4 |
model_id = "thrishala/mental_health_chatbot"
|
5 |
|
6 |
+
try:
|
7 |
+
pipe = pipeline("text-generation", model=model_id) # Directly create pipeline
|
8 |
+
|
9 |
+
except Exception as e:
|
10 |
+
print(f"Error loading model: {e}")
|
11 |
+
exit()
|
12 |
+
|
13 |
def respond(
|
14 |
message,
|
15 |
history: list[tuple[str, str]],
|
16 |
+
system_message, # You can use this for initial instructions
|
17 |
max_tokens,
|
18 |
temperature,
|
19 |
top_p,
|
20 |
):
|
21 |
+
# 2. Construct the Prompt (Crucial!)
|
22 |
+
prompt = f"{system_message}\n"
|
23 |
+
for user_msg, bot_msg in history:
|
24 |
+
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
25 |
+
prompt += f"User: {message}\nAssistant:"
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# 3. Generate with the Pipeline
|
28 |
+
try:
|
29 |
+
response = pipe(
|
30 |
+
prompt,
|
31 |
+
max_new_tokens=max_tokens,
|
|
|
32 |
temperature=temperature,
|
33 |
top_p=top_p,
|
34 |
+
)[0]["generated_text"]
|
35 |
+
#Extract the bot's reply (adjust if your model format is different)
|
36 |
+
bot_response = response.split("Assistant:")[-1].strip()
|
37 |
+
yield bot_response
|
|
|
38 |
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error during generation: {e}")
|
41 |
+
yield "An error occurred during generation." #Handle generation errors.
|
42 |
|
43 |
+
# 4. Gradio Interface (No changes needed here)
|
|
|
|
|
44 |
demo = gr.ChatInterface(
|
45 |
respond,
|
46 |
additional_inputs=[
|
47 |
+
gr.Textbox(
|
48 |
+
value="You are a friendly and helpful mental health chatbot.",
|
49 |
+
label="System message",
|
50 |
+
),
|
51 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
52 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
53 |
gr.Slider(
|
|
|
60 |
],
|
61 |
)
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
+
demo.launch()
|