bobpopboom commited on
Commit
e929713
·
verified ·
1 Parent(s): 8fdda35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -33
app.py CHANGED
@@ -1,52 +1,53 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
- from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
  model_id = "thrishala/mental_health_chatbot"
9
 
 
 
 
 
 
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
13
- system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
 
 
 
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
@@ -59,6 +60,5 @@ demo = gr.ChatInterface(
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
 
 
 
 
4
  model_id = "thrishala/mental_health_chatbot"
5
 
6
+ try:
7
+ pipe = pipeline("text-generation", model=model_id) # Directly create pipeline
8
+
9
+ except Exception as e:
10
+ print(f"Error loading model: {e}")
11
+ exit()
12
+
13
  def respond(
14
  message,
15
  history: list[tuple[str, str]],
16
+ system_message, # You can use this for initial instructions
17
  max_tokens,
18
  temperature,
19
  top_p,
20
  ):
21
+ # 2. Construct the Prompt (Crucial!)
22
+ prompt = f"{system_message}\n"
23
+ for user_msg, bot_msg in history:
24
+ prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
25
+ prompt += f"User: {message}\nAssistant:"
 
 
 
 
26
 
27
+ # 3. Generate with the Pipeline
28
+ try:
29
+ response = pipe(
30
+ prompt,
31
+ max_new_tokens=max_tokens,
 
32
  temperature=temperature,
33
  top_p=top_p,
34
+ )[0]["generated_text"]
35
+ #Extract the bot's reply (adjust if your model format is different)
36
+ bot_response = response.split("Assistant:")[-1].strip()
37
+ yield bot_response
 
38
 
39
+ except Exception as e:
40
+ print(f"Error during generation: {e}")
41
+ yield "An error occurred during generation." #Handle generation errors.
42
 
43
+ # 4. Gradio Interface (No changes needed here)
 
 
44
  demo = gr.ChatInterface(
45
  respond,
46
  additional_inputs=[
47
+ gr.Textbox(
48
+ value="You are a friendly and helpful mental health chatbot.",
49
+ label="System message",
50
+ ),
51
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
  gr.Slider(
 
60
  ],
61
  )
62
 
 
63
  if __name__ == "__main__":
64
+ demo.launch()