import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch if torch.cuda.is_available(): device = "cuda" else: device = "cpu" model_id = "thrishala/mental_health_chatbot" try: model = AutoModelForCausalLM.from_pretrained( model_id, device_map=device, # Use the determined device torch_dtype=torch.float16, low_cpu_mem_usage=True, max_memory={device: "15GB"}, # Use device-specific memory management offload_folder="offload", ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.model_max_length = 512 # Set maximum length except Exception as e: print(f"Error loading model: {e}") exit() def generate_text(prompt, max_new_tokens=128): input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=False, # Or True for sampling eos_token_id=tokenizer.eos_token_id, ) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) return generated_text def respond(message, history, system_message, max_tokens): prompt = f"{system_message}\n" for user_msg, bot_msg in history: prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" try: bot_response = generate_text(prompt, max_tokens) # Use the new function yield bot_response except Exception as e: print(f"Error during generation: {e}") yield "An error occurred." demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful mental health chatbot.", label="System message", ), gr.Slider(minimum=1, maximum=128, value=128, step=10, label="Max new tokens"), ], ) if __name__ == "__main__": demo.launch()