import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import torch model_id = "thrishala/mental_health_chatbot" try: tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, load_in_8bit=True, device_map="auto", torch_dtype=torch.float16 ) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) except Exception as e: print(f"Error loading model: {e}") exit() def respond( message, history, system_message, max_tokens, temperature, top_p, ): # Construct the prompt with clear separation prompt = f"{system_message}\n" for user_msg, bot_msg in history: prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" try: response = pipe( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, eos_token_id=tokenizer.eos_token_id, # Use EOS token to stop generation )[0]["generated_text"] # Extract only the new assistant response after the last Assistant: in the prompt bot_response = response[len(prompt):].split("User:")[0].strip() # Take text after prompt and before next User yield bot_response except Exception as e: print(f"Error during generation: {e}") yield "An error occurred." demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful mental health chatbot.", label="System message", ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()