import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import torch model_id = "thrishala/mental_health_chatbot" try: model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cpu", torch_dtype=torch.float16, low_cpu_mem_usage=True, max_memory={"cpu": "15GB"}, offload_folder="offload", ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.model_max_length = 256 # Set maximum length pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, num_return_sequences=1, do_sample=False, truncation=True, max_new_tokens=128 ) except Exception as e: print(f"Error loading model: {e}") exit() def respond(message, history, system_message, max_tokens, temperature, top_p): prompt = f"{system_message}\n" for user_msg, bot_msg in history: prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" try: response = pipe( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=False, pad_token_id=tokenizer.eos_token_id )[0]["generated_text"] bot_response = response.split("Assistant:")[-1].strip() yield bot_response except Exception as e: print(f"Error during generation: {e}") yield "An error occurred during generation." demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful mental health chatbot.", label="System message", ), gr.Slider(minimum=1, maximum=128, value=128, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], chatbot=gr.Chatbot(type="messages"), # Updated to new format ) if __name__ == "__main__": demo.launch()