Upload 4 files
Browse files- app.py +400 -0
- requirements.txt +7 -0
- static/style.css +0 -0
- templates/index.html +411 -0
app.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from flask import Flask, request, jsonify, render_template
|
2 |
+
# import pdfplumber
|
3 |
+
# import io
|
4 |
+
# from transformers import T5ForConditionalGeneration, T5Tokenizer
|
5 |
+
# import torch
|
6 |
+
|
7 |
+
# app = Flask(__name__)
|
8 |
+
|
9 |
+
# # Load the T5 model and tokenizer
|
10 |
+
# model_name = "t5-large"
|
11 |
+
# tokenizer = T5Tokenizer.from_pretrained(model_name)
|
12 |
+
# model = T5ForConditionalGeneration.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# @app.route('/')
|
15 |
+
# def index():
|
16 |
+
# return render_template('index.html') # Ensure index.html exists in templates/
|
17 |
+
|
18 |
+
# @app.route('/upload-resume', methods=['POST'])
|
19 |
+
# def upload_resume():
|
20 |
+
# try:
|
21 |
+
# file = request.files['resume']
|
22 |
+
# if not file.filename.endswith('.pdf'):
|
23 |
+
# return jsonify({"error": "Only PDF files are supported"}), 400
|
24 |
+
|
25 |
+
# # Extract text from PDF
|
26 |
+
# text = ""
|
27 |
+
# with pdfplumber.open(io.BytesIO(file.read())) as pdf:
|
28 |
+
# for page in pdf.pages:
|
29 |
+
# page_text = page.extract_text()
|
30 |
+
# if page_text:
|
31 |
+
# text += page_text + "\n"
|
32 |
+
|
33 |
+
# # Create a prompt dynamically based on resume content
|
34 |
+
# prompt = f"Generate 5 technical and 3 behavioral interview questions based on this resume:\n{text.strip()}"
|
35 |
+
|
36 |
+
# # Tokenize and generate questions
|
37 |
+
# inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
|
38 |
+
# output = model.generate(**inputs, max_length=512, num_beams=4, early_stopping=True)
|
39 |
+
|
40 |
+
# questions = tokenizer.decode(output[0], skip_special_tokens=True)
|
41 |
+
# questions_list = [q.strip() for q in questions.split("\n") if q.strip()]
|
42 |
+
|
43 |
+
# return jsonify(questions_list)
|
44 |
+
|
45 |
+
# except Exception as e:
|
46 |
+
# print("Error:", e)
|
47 |
+
# return jsonify({"error": str(e)}), 500
|
48 |
+
|
49 |
+
# if __name__ == '__main__':
|
50 |
+
# app.run(debug=True)
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
from flask import Flask, request, jsonify, render_template, send_from_directory
|
56 |
+
import pdfplumber
|
57 |
+
import io
|
58 |
+
import re
|
59 |
+
import nltk
|
60 |
+
from nltk.corpus import stopwords
|
61 |
+
from nltk.tokenize import word_tokenize
|
62 |
+
import spacy
|
63 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
64 |
+
import torch
|
65 |
+
import logging
|
66 |
+
from collections import Counter
|
67 |
+
import os
|
68 |
+
|
69 |
+
|
70 |
+
os.environ["TRANSFORMERS_CACHE"] = os.path.join(os.getcwd(), "models")
|
71 |
+
|
72 |
+
# Configure logging
|
73 |
+
logging.basicConfig(level=logging.INFO,
|
74 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
75 |
+
logger = logging.getLogger(__name__)
|
76 |
+
|
77 |
+
app = Flask(__name__, static_folder='static')
|
78 |
+
|
79 |
+
# Download required NLTK data
|
80 |
+
try:
|
81 |
+
nltk.download('punkt', quiet=True)
|
82 |
+
nltk.download('stopwords', quiet=True)
|
83 |
+
stop_words = set(stopwords.words('english'))
|
84 |
+
except Exception as e:
|
85 |
+
logger.warning(f"NLTK download error: {str(e)}")
|
86 |
+
stop_words = set()
|
87 |
+
|
88 |
+
# Load spaCy model for entity recognition
|
89 |
+
try:
|
90 |
+
nlp = spacy.load("en_core_web_sm")
|
91 |
+
except Exception as e:
|
92 |
+
logger.warning(f"SpaCy model loading error: {str(e)}")
|
93 |
+
|
94 |
+
# Optional fallback if spaCy model isn't installed
|
95 |
+
def download_spacy_model():
|
96 |
+
import subprocess
|
97 |
+
subprocess.call(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
98 |
+
|
99 |
+
try:
|
100 |
+
download_spacy_model()
|
101 |
+
nlp = spacy.load("en_core_web_sm")
|
102 |
+
except:
|
103 |
+
logger.error("Failed to load spaCy model")
|
104 |
+
nlp = None
|
105 |
+
|
106 |
+
# Load GPT-2 model and tokenizer for better text generation
|
107 |
+
try:
|
108 |
+
model_name = "distilgpt2"
|
109 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
110 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
111 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
112 |
+
model.to(device)
|
113 |
+
except Exception as e:
|
114 |
+
logger.error(f"Model loading error: {str(e)}")
|
115 |
+
model = None
|
116 |
+
tokenizer = None
|
117 |
+
|
118 |
+
def extract_skills(text):
|
119 |
+
"""Extract technical skills from resume text"""
|
120 |
+
# Common technical skills to look for
|
121 |
+
common_skills = {
|
122 |
+
'programming': ['python', 'java', 'javascript', 'c++', 'c#', 'ruby', 'php', 'swift', 'kotlin', 'go', 'rust', 'typescript', 'scala', 'perl', 'shell', 'bash', 'sql', 'html', 'css'],
|
123 |
+
'frameworks': ['react', 'angular', 'vue', 'django', 'flask', 'spring', 'express', 'rails', 'asp.net', 'laravel', 'node.js', 'bootstrap', 'jquery', 'tensorflow', 'pytorch', 'numpy', 'pandas'],
|
124 |
+
'databases': ['mysql', 'postgresql', 'mongodb', 'oracle', 'sql server', 'sqlite', 'redis', 'cassandra', 'dynamodb', 'firebase', 'elasticsearch'],
|
125 |
+
'tools': ['git', 'docker', 'kubernetes', 'jenkins', 'aws', 'azure', 'gcp', 'terraform', 'ansible', 'jira', 'confluence', 'notion', 'figma', 'photoshop', 'illustrator'],
|
126 |
+
'methodologies': ['agile', 'scrum', 'kanban', 'devops', 'ci/cd', 'test driven development', 'tdd', 'behavior driven development', 'bdd', 'rest', 'soap', 'microservices', 'serverless']
|
127 |
+
}
|
128 |
+
|
129 |
+
# Flatten the list
|
130 |
+
all_skills = [skill for category in common_skills.values() for skill in category]
|
131 |
+
|
132 |
+
# Find matches in the text
|
133 |
+
found_skills = []
|
134 |
+
text_lower = text.lower()
|
135 |
+
|
136 |
+
for skill in all_skills:
|
137 |
+
# Check for whole word matches
|
138 |
+
pattern = r'\b' + re.escape(skill) + r'\b'
|
139 |
+
if re.search(pattern, text_lower):
|
140 |
+
found_skills.append(skill)
|
141 |
+
|
142 |
+
# If spaCy is available, also look for named entities that might be technologies
|
143 |
+
if nlp:
|
144 |
+
doc = nlp(text)
|
145 |
+
for ent in doc.ents:
|
146 |
+
if ent.label_ in ["ORG", "PRODUCT"] and len(ent.text) > 2:
|
147 |
+
entity = ent.text.lower()
|
148 |
+
# Check if entity might be a technology
|
149 |
+
if any(tech_word in entity for tech_word in ["tech", "software", "platform", "system", "framework", "api", "cloud"]):
|
150 |
+
found_skills.append(ent.text)
|
151 |
+
|
152 |
+
# Count occurrences to identify most important skills
|
153 |
+
skill_counter = Counter(found_skills)
|
154 |
+
top_skills = [skill for skill, _ in skill_counter.most_common(10)]
|
155 |
+
|
156 |
+
return top_skills
|
157 |
+
|
158 |
+
def extract_experience(text):
|
159 |
+
"""Extract work experience information from resume"""
|
160 |
+
experience_data = []
|
161 |
+
|
162 |
+
# Look for common experience section headers
|
163 |
+
experience_headers = ["experience", "work experience", "employment history", "professional experience"]
|
164 |
+
|
165 |
+
# Simple pattern matching for job titles and dates
|
166 |
+
job_title_pattern = r"(?:^|\n)(?:Senior |Lead |Junior |Staff |Principal )?\b(?:Developer|Engineer|Designer|Manager|Director|Analyst|Consultant|Administrator|Architect|Specialist)\b"
|
167 |
+
date_pattern = r"\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{4}\s*(?:-|–|to)\s*(?:(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{4}|Present|Current|Now)"
|
168 |
+
|
169 |
+
# Find experience section
|
170 |
+
text_lower = text.lower()
|
171 |
+
section_start = None
|
172 |
+
for header in experience_headers:
|
173 |
+
if header in text_lower:
|
174 |
+
section_start = text_lower.find(header)
|
175 |
+
break
|
176 |
+
|
177 |
+
if section_start is not None:
|
178 |
+
# Extract the section (assume it ends at the next major section)
|
179 |
+
next_section_start = float('inf')
|
180 |
+
for next_header in ["education", "skills", "projects", "certifications", "references"]:
|
181 |
+
pos = text_lower.find(next_header, section_start + 1)
|
182 |
+
if pos > section_start and pos < next_section_start:
|
183 |
+
next_section_start = pos
|
184 |
+
|
185 |
+
experience_section = text[section_start:next_section_start] if next_section_start < float('inf') else text[section_start:]
|
186 |
+
|
187 |
+
# Extract job titles
|
188 |
+
job_titles = re.findall(job_title_pattern, experience_section, re.IGNORECASE)
|
189 |
+
|
190 |
+
# Extract date ranges
|
191 |
+
date_ranges = re.findall(date_pattern, experience_section)
|
192 |
+
|
193 |
+
# Combine the information
|
194 |
+
for i, title in enumerate(job_titles[:3]): # Limit to top 3 positions
|
195 |
+
date = date_ranges[i] if i < len(date_ranges) else "Unknown date"
|
196 |
+
experience_data.append({"title": title.strip(), "date": date})
|
197 |
+
|
198 |
+
return experience_data
|
199 |
+
|
200 |
+
def extract_education(text):
|
201 |
+
"""Extract education information from resume"""
|
202 |
+
education_data = []
|
203 |
+
|
204 |
+
# Look for degrees and institutions
|
205 |
+
degree_pattern = r"\b(?:Bachelor|Master|PhD|Doctorate|BSc|MSc|BA|MA|MBA|MD|JD|BS|MS|B\.S\.|M\.S\.|B\.A\.|M\.A\.)['\s\w]*\b"
|
206 |
+
institution_pattern = r"\b(?:University|College|Institute|School) of [\w\s]+\b"
|
207 |
+
|
208 |
+
# Find matches
|
209 |
+
degrees = re.findall(degree_pattern, text)
|
210 |
+
institutions = re.findall(institution_pattern, text)
|
211 |
+
|
212 |
+
# Combine the information
|
213 |
+
for i, degree in enumerate(degrees[:2]): # Limit to top 2 degrees
|
214 |
+
institution = institutions[i] if i < len(institutions) else "Unknown institution"
|
215 |
+
education_data.append({"degree": degree.strip(), "institution": institution})
|
216 |
+
|
217 |
+
return education_data
|
218 |
+
|
219 |
+
def preprocess_resume(text):
|
220 |
+
"""Extract structured information from resume text"""
|
221 |
+
# Basic text cleaning
|
222 |
+
text = text.replace('\n\n', ' [BREAK] ')
|
223 |
+
text = re.sub(r'\s+', ' ', text)
|
224 |
+
text = text.replace(' [BREAK] ', '\n\n')
|
225 |
+
|
226 |
+
# Extract key information
|
227 |
+
skills = extract_skills(text)
|
228 |
+
experience = extract_experience(text)
|
229 |
+
education = extract_education(text)
|
230 |
+
|
231 |
+
# Create structured resume data
|
232 |
+
resume_data = {
|
233 |
+
"skills": skills,
|
234 |
+
"experience": experience,
|
235 |
+
"education": education,
|
236 |
+
"full_text": text
|
237 |
+
}
|
238 |
+
|
239 |
+
return resume_data
|
240 |
+
|
241 |
+
def generate_interview_questions(resume_data):
|
242 |
+
"""Generate interview questions based on resume data"""
|
243 |
+
# Default set of questions if model fails
|
244 |
+
default_questions = [
|
245 |
+
# Technical questions
|
246 |
+
"What challenges have you faced when working with databases, and how did you overcome them?",
|
247 |
+
"Describe a project where you had to optimize code for performance. What approach did you take?",
|
248 |
+
"How do you ensure your code is maintainable and follows best practices?",
|
249 |
+
"What software development methodologies are you familiar with, and which do you prefer?",
|
250 |
+
"How do you approach testing your code?",
|
251 |
+
|
252 |
+
# Behavioral questions
|
253 |
+
"Tell me about a challenging project you worked on and how you approached it.",
|
254 |
+
"Describe a situation where you had to learn a new technology quickly.",
|
255 |
+
"How do you handle tight deadlines and pressure?"
|
256 |
+
]
|
257 |
+
|
258 |
+
# If no model is loaded, return default questions
|
259 |
+
if model is None or tokenizer is None:
|
260 |
+
return default_questions
|
261 |
+
|
262 |
+
# Extract key resume information
|
263 |
+
skills_str = ", ".join(resume_data["skills"])
|
264 |
+
|
265 |
+
experience_str = ""
|
266 |
+
for exp in resume_data["experience"]:
|
267 |
+
experience_str += f"{exp['title']} ({exp['date']}), "
|
268 |
+
|
269 |
+
# Build a prompt for the model
|
270 |
+
prompt = f"""Generate 8 interview questions based on this resume information:
|
271 |
+
Skills: {skills_str}
|
272 |
+
Experience: {experience_str}
|
273 |
+
|
274 |
+
Include 5 technical questions specific to the candidate's skills and 3 behavioral questions.
|
275 |
+
Format each question on a new line and make them realistic interview questions.
|
276 |
+
"""
|
277 |
+
|
278 |
+
try:
|
279 |
+
# Generate text
|
280 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
281 |
+
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device)
|
282 |
+
|
283 |
+
# Generate with better parameters for coherent questions
|
284 |
+
output = model.generate(
|
285 |
+
input_ids,
|
286 |
+
attention_mask=attention_mask,
|
287 |
+
max_length=1024,
|
288 |
+
num_return_sequences=1,
|
289 |
+
no_repeat_ngram_size=2,
|
290 |
+
do_sample=True,
|
291 |
+
top_p=0.92,
|
292 |
+
top_k=50,
|
293 |
+
temperature=0.85
|
294 |
+
)
|
295 |
+
|
296 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
297 |
+
|
298 |
+
# Process the output to extract questions
|
299 |
+
text_split = generated_text.replace(prompt, "").strip().split("\n")
|
300 |
+
|
301 |
+
# Clean up and format questions
|
302 |
+
questions = []
|
303 |
+
for line in text_split:
|
304 |
+
# Remove question numbers and clean
|
305 |
+
line = re.sub(r'^\d+[\.\)]\s*', '', line.strip())
|
306 |
+
|
307 |
+
# Only keep lines that look like questions
|
308 |
+
if line and ('?' in line or any(q_word in line.lower() for q_word in ["how", "what", "why", "when", "where", "describe", "tell", "explain"])):
|
309 |
+
# Ensure questions end with question mark
|
310 |
+
if not line.endswith('?') and any(q_word in line.lower() for q_word in ["how", "what", "why", "when", "where"]):
|
311 |
+
line += '?'
|
312 |
+
questions.append(line)
|
313 |
+
|
314 |
+
# Check if we got enough questions
|
315 |
+
if len(questions) >= 5:
|
316 |
+
return questions[:8] # Return up to 8 questions
|
317 |
+
else:
|
318 |
+
# Fallback to default questions
|
319 |
+
logger.warning("Generated questions insufficient, using defaults")
|
320 |
+
return default_questions
|
321 |
+
|
322 |
+
except Exception as e:
|
323 |
+
logger.error(f"Question generation error: {str(e)}")
|
324 |
+
return default_questions
|
325 |
+
|
326 |
+
@app.route('/')
|
327 |
+
def index():
|
328 |
+
return render_template('index.html')
|
329 |
+
|
330 |
+
@app.route('/static/<path:path>')
|
331 |
+
def serve_static(path):
|
332 |
+
return send_from_directory('static', path)
|
333 |
+
|
334 |
+
@app.route('/upload-resume', methods=['POST'])
|
335 |
+
def upload_resume():
|
336 |
+
try:
|
337 |
+
if 'resume' not in request.files:
|
338 |
+
return jsonify({"error": "No file part"}), 400
|
339 |
+
|
340 |
+
file = request.files['resume']
|
341 |
+
|
342 |
+
if file.filename == '':
|
343 |
+
return jsonify({"error": "No selected file"}), 400
|
344 |
+
|
345 |
+
if not file.filename.endswith('.pdf'):
|
346 |
+
return jsonify({"error": "Only PDF files are supported"}), 400
|
347 |
+
|
348 |
+
# Extract text from PDF
|
349 |
+
text = ""
|
350 |
+
try:
|
351 |
+
with pdfplumber.open(io.BytesIO(file.read())) as pdf:
|
352 |
+
for page in pdf.pages:
|
353 |
+
page_text = page.extract_text()
|
354 |
+
if page_text:
|
355 |
+
text += page_text + "\n"
|
356 |
+
except Exception as e:
|
357 |
+
logger.error(f"PDF extraction error: {str(e)}")
|
358 |
+
return jsonify({"error": "Unable to extract text from PDF. Is the file corrupt?"}), 500
|
359 |
+
|
360 |
+
if not text.strip():
|
361 |
+
return jsonify({"error": "No text could be extracted from the PDF"}), 400
|
362 |
+
|
363 |
+
# Process resume and generate questions
|
364 |
+
resume_data = preprocess_resume(text)
|
365 |
+
questions = generate_interview_questions(resume_data)
|
366 |
+
|
367 |
+
# Add tailored question based on skills
|
368 |
+
if resume_data["skills"]:
|
369 |
+
top_skill = resume_data["skills"][0]
|
370 |
+
skill_question = f"Tell me about your experience with {top_skill} and how you've applied it in your projects."
|
371 |
+
questions.append(skill_question)
|
372 |
+
|
373 |
+
return jsonify(questions)
|
374 |
+
|
375 |
+
except Exception as e:
|
376 |
+
logger.error(f"General error: {str(e)}")
|
377 |
+
return jsonify({"error": "An error occurred processing your request. Please try again."}), 500
|
378 |
+
|
379 |
+
if __name__ == '__main__':
|
380 |
+
# Make sure templates and static directories exist
|
381 |
+
for directory in ['templates', 'static']:
|
382 |
+
os.makedirs(directory, exist_ok=True)
|
383 |
+
|
384 |
+
# Create index.html in templates if needed
|
385 |
+
templates_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'templates')
|
386 |
+
if not os.path.exists(os.path.join(templates_dir, 'index.html')):
|
387 |
+
with open(os.path.join(templates_dir, 'index.html'), 'w') as f:
|
388 |
+
f.write('''<!DOCTYPE html>
|
389 |
+
<html>
|
390 |
+
<head>
|
391 |
+
<title>Resume Question Generator</title>
|
392 |
+
<meta http-equiv="refresh" content="0;url=/" />
|
393 |
+
</head>
|
394 |
+
<body>
|
395 |
+
<p>Redirecting...</p>
|
396 |
+
</body>
|
397 |
+
</html>''')
|
398 |
+
|
399 |
+
# Start the Flask app
|
400 |
+
app.run(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask==2.2.3
|
2 |
+
gunicorn==20.1.0
|
3 |
+
pdfplumber==0.7.6
|
4 |
+
nltk==3.8.1
|
5 |
+
spacy==3.5.0
|
6 |
+
torch==2.0.0
|
7 |
+
transformers==4.27.1
|
static/style.css
ADDED
File without changes
|
templates/index.html
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- <!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<title>AI Interview Simulator</title>
|
6 |
+
</head>
|
7 |
+
<body>
|
8 |
+
<h1>Upload Your Resume</h1>
|
9 |
+
<form id="upload-form" enctype="multipart/form-data">
|
10 |
+
<input type="file" name="resume" accept=".pdf" required />
|
11 |
+
<button type="submit">Generate Questions</button>
|
12 |
+
</form>
|
13 |
+
|
14 |
+
<h2>Generated Questions:</h2>
|
15 |
+
<ul id="question-list"></ul>
|
16 |
+
|
17 |
+
<script>
|
18 |
+
const form = document.getElementById("upload-form");
|
19 |
+
const questionList = document.getElementById("question-list");
|
20 |
+
|
21 |
+
form.addEventListener("submit", async (e) => {
|
22 |
+
e.preventDefault();
|
23 |
+
const formData = new FormData(form);
|
24 |
+
const response = await fetch("/upload-resume", {
|
25 |
+
method: "POST",
|
26 |
+
body: formData
|
27 |
+
});
|
28 |
+
const questions = await response.json();
|
29 |
+
questionList.innerHTML = "";
|
30 |
+
questions.forEach(q => {
|
31 |
+
const li = document.createElement("li");
|
32 |
+
li.textContent = q;
|
33 |
+
questionList.appendChild(li);
|
34 |
+
});
|
35 |
+
});
|
36 |
+
</script>
|
37 |
+
</body>
|
38 |
+
</html> -->
|
39 |
+
|
40 |
+
|
41 |
+
<!DOCTYPE html>
|
42 |
+
<html lang="en">
|
43 |
+
<head>
|
44 |
+
<meta charset="UTF-8">
|
45 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
46 |
+
<title>AI Interview Simulator</title>
|
47 |
+
<style>
|
48 |
+
:root {
|
49 |
+
--primary: #4f46e5;
|
50 |
+
--primary-dark: #4338ca;
|
51 |
+
--secondary: #f3f4f6;
|
52 |
+
--text: #1f2937;
|
53 |
+
--light-text: #6b7280;
|
54 |
+
--accent: #fef3c7;
|
55 |
+
--border: #e5e7eb;
|
56 |
+
--shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
|
57 |
+
}
|
58 |
+
|
59 |
+
* {
|
60 |
+
margin: 0;
|
61 |
+
padding: 0;
|
62 |
+
box-sizing: border-box;
|
63 |
+
font-family: 'Inter', system-ui, -apple-system, sans-serif;
|
64 |
+
}
|
65 |
+
|
66 |
+
body {
|
67 |
+
background-color: #f9fafb;
|
68 |
+
color: var(--text);
|
69 |
+
line-height: 1.5;
|
70 |
+
}
|
71 |
+
|
72 |
+
.container {
|
73 |
+
max-width: 800px;
|
74 |
+
margin: 0 auto;
|
75 |
+
padding: 2rem 1rem;
|
76 |
+
}
|
77 |
+
|
78 |
+
header {
|
79 |
+
text-align: center;
|
80 |
+
margin-bottom: 3rem;
|
81 |
+
}
|
82 |
+
|
83 |
+
h1 {
|
84 |
+
color: var(--primary);
|
85 |
+
font-size: 2.5rem;
|
86 |
+
margin-bottom: 1rem;
|
87 |
+
}
|
88 |
+
|
89 |
+
.tagline {
|
90 |
+
color: var(--light-text);
|
91 |
+
font-size: 1.2rem;
|
92 |
+
max-width: 600px;
|
93 |
+
margin: 0 auto;
|
94 |
+
}
|
95 |
+
|
96 |
+
.card {
|
97 |
+
background-color: white;
|
98 |
+
border-radius: 12px;
|
99 |
+
box-shadow: var(--shadow);
|
100 |
+
padding: 2rem;
|
101 |
+
margin-bottom: 2rem;
|
102 |
+
}
|
103 |
+
|
104 |
+
.card-title {
|
105 |
+
color: var(--text);
|
106 |
+
font-size: 1.5rem;
|
107 |
+
margin-bottom: 1.5rem;
|
108 |
+
display: flex;
|
109 |
+
align-items: center;
|
110 |
+
gap: 10px;
|
111 |
+
}
|
112 |
+
|
113 |
+
.icon {
|
114 |
+
background-color: var(--accent);
|
115 |
+
width: 40px;
|
116 |
+
height: 40px;
|
117 |
+
border-radius: 50%;
|
118 |
+
display: flex;
|
119 |
+
align-items: center;
|
120 |
+
justify-content: center;
|
121 |
+
font-weight: bold;
|
122 |
+
color: var(--primary);
|
123 |
+
}
|
124 |
+
|
125 |
+
.upload-area {
|
126 |
+
border: 2px dashed var(--border);
|
127 |
+
border-radius: 8px;
|
128 |
+
padding: 2rem;
|
129 |
+
text-align: center;
|
130 |
+
transition: all 0.3s;
|
131 |
+
cursor: pointer;
|
132 |
+
position: relative;
|
133 |
+
margin-bottom: 1.5rem;
|
134 |
+
}
|
135 |
+
|
136 |
+
.upload-area:hover {
|
137 |
+
border-color: var(--primary);
|
138 |
+
background-color: rgba(79, 70, 229, 0.03);
|
139 |
+
}
|
140 |
+
|
141 |
+
.upload-area p {
|
142 |
+
color: var(--light-text);
|
143 |
+
margin: 1rem 0;
|
144 |
+
}
|
145 |
+
|
146 |
+
.file-input {
|
147 |
+
position: absolute;
|
148 |
+
width: 100%;
|
149 |
+
height: 100%;
|
150 |
+
top: 0;
|
151 |
+
left: 0;
|
152 |
+
opacity: 0;
|
153 |
+
cursor: pointer;
|
154 |
+
}
|
155 |
+
|
156 |
+
.button {
|
157 |
+
background-color: var(--primary);
|
158 |
+
color: white;
|
159 |
+
border: none;
|
160 |
+
border-radius: 8px;
|
161 |
+
padding: 12px 24px;
|
162 |
+
font-size: 1rem;
|
163 |
+
font-weight: 600;
|
164 |
+
cursor: pointer;
|
165 |
+
transition: all 0.2s;
|
166 |
+
display: inline-flex;
|
167 |
+
align-items: center;
|
168 |
+
justify-content: center;
|
169 |
+
gap: 8px;
|
170 |
+
}
|
171 |
+
|
172 |
+
.button:hover {
|
173 |
+
background-color: var(--primary-dark);
|
174 |
+
transform: translateY(-1px);
|
175 |
+
}
|
176 |
+
|
177 |
+
.file-name {
|
178 |
+
background-color: var(--secondary);
|
179 |
+
padding: 8px 16px;
|
180 |
+
border-radius: 6px;
|
181 |
+
display: none;
|
182 |
+
align-items: center;
|
183 |
+
justify-content: space-between;
|
184 |
+
margin-bottom: 1.5rem;
|
185 |
+
}
|
186 |
+
|
187 |
+
.file-name.active {
|
188 |
+
display: flex;
|
189 |
+
}
|
190 |
+
|
191 |
+
.remove-file {
|
192 |
+
background: none;
|
193 |
+
border: none;
|
194 |
+
color: var(--light-text);
|
195 |
+
cursor: pointer;
|
196 |
+
font-size: 1.2rem;
|
197 |
+
}
|
198 |
+
|
199 |
+
.question-list {
|
200 |
+
list-style-type: none;
|
201 |
+
}
|
202 |
+
|
203 |
+
.question-item {
|
204 |
+
padding: 16px;
|
205 |
+
border-radius: 8px;
|
206 |
+
background-color: var(--secondary);
|
207 |
+
margin-bottom: 12px;
|
208 |
+
animation: fadeIn 0.5s ease-in-out;
|
209 |
+
}
|
210 |
+
|
211 |
+
.question-number {
|
212 |
+
font-weight: 600;
|
213 |
+
color: var(--primary);
|
214 |
+
margin-right: 8px;
|
215 |
+
}
|
216 |
+
|
217 |
+
.loading {
|
218 |
+
display: none;
|
219 |
+
align-items: center;
|
220 |
+
justify-content: center;
|
221 |
+
gap: 12px;
|
222 |
+
margin: 2rem 0;
|
223 |
+
}
|
224 |
+
|
225 |
+
.loading.active {
|
226 |
+
display: flex;
|
227 |
+
}
|
228 |
+
|
229 |
+
.spinner {
|
230 |
+
width: 24px;
|
231 |
+
height: 24px;
|
232 |
+
border: 3px solid rgba(79, 70, 229, 0.3);
|
233 |
+
border-radius: 50%;
|
234 |
+
border-top-color: var(--primary);
|
235 |
+
animation: spin 1s linear infinite;
|
236 |
+
}
|
237 |
+
|
238 |
+
.no-questions {
|
239 |
+
text-align: center;
|
240 |
+
color: var(--light-text);
|
241 |
+
padding: 2rem;
|
242 |
+
}
|
243 |
+
|
244 |
+
@keyframes fadeIn {
|
245 |
+
from { opacity: 0; transform: translateY(10px); }
|
246 |
+
to { opacity: 1; transform: translateY(0); }
|
247 |
+
}
|
248 |
+
|
249 |
+
@keyframes spin {
|
250 |
+
to { transform: rotate(360deg); }
|
251 |
+
}
|
252 |
+
|
253 |
+
@media (max-width: 640px) {
|
254 |
+
.container {
|
255 |
+
padding: 1rem;
|
256 |
+
}
|
257 |
+
|
258 |
+
h1 {
|
259 |
+
font-size: 2rem;
|
260 |
+
}
|
261 |
+
|
262 |
+
.card {
|
263 |
+
padding: 1.5rem;
|
264 |
+
}
|
265 |
+
}
|
266 |
+
</style>
|
267 |
+
</head>
|
268 |
+
<body>
|
269 |
+
<div class="container">
|
270 |
+
<header>
|
271 |
+
<h1>AI Interview Simulator</h1>
|
272 |
+
<p class="tagline">Upload your resume and receive tailored interview questions to help you prepare for your next job interview</p>
|
273 |
+
</header>
|
274 |
+
|
275 |
+
<div class="card">
|
276 |
+
<h2 class="card-title">
|
277 |
+
<span class="icon">1</span>
|
278 |
+
Upload Your Resume
|
279 |
+
</h2>
|
280 |
+
|
281 |
+
<form id="upload-form" enctype="multipart/form-data">
|
282 |
+
<div class="upload-area" id="drop-area">
|
283 |
+
<svg xmlns="http://www.w3.org/2000/svg" width="48" height="48" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-upload" style="color: var(--primary);">
|
284 |
+
<path d="M21 15v4a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2v-4"></path>
|
285 |
+
<polyline points="17 8 12 3 7 8"></polyline>
|
286 |
+
<line x1="12" y1="3" x2="12" y2="15"></line>
|
287 |
+
</svg>
|
288 |
+
|
289 |
+
<p>Drag and drop your resume, or click to browse</p>
|
290 |
+
<p style="font-size: 0.9rem;">Supported format: PDF</p>
|
291 |
+
|
292 |
+
<input type="file" name="resume" accept=".pdf" required class="file-input" id="file-input" />
|
293 |
+
</div>
|
294 |
+
|
295 |
+
<div class="file-name" id="file-display">
|
296 |
+
<span id="file-name">document.pdf</span>
|
297 |
+
<button type="button" class="remove-file" id="remove-file">×</button>
|
298 |
+
</div>
|
299 |
+
|
300 |
+
<button type="submit" class="button" id="generate-btn">
|
301 |
+
<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
302 |
+
<circle cx="12" cy="12" r="10"></circle>
|
303 |
+
<polygon points="10 8 16 12 10 16 10 8"></polygon>
|
304 |
+
</svg>
|
305 |
+
Generate Interview Questions
|
306 |
+
</button>
|
307 |
+
</form>
|
308 |
+
</div>
|
309 |
+
|
310 |
+
<div class="loading" id="loading">
|
311 |
+
<div class="spinner"></div>
|
312 |
+
<span>Analyzing your resume...</span>
|
313 |
+
</div>
|
314 |
+
|
315 |
+
<div class="card" id="questions-card" style="display: none;">
|
316 |
+
<h2 class="card-title">
|
317 |
+
<span class="icon">2</span>
|
318 |
+
Your Interview Questions
|
319 |
+
</h2>
|
320 |
+
|
321 |
+
<div id="questions-container">
|
322 |
+
<ul class="question-list" id="question-list"></ul>
|
323 |
+
<div class="no-questions" id="no-questions">
|
324 |
+
Upload your resume to see personalized interview questions
|
325 |
+
</div>
|
326 |
+
</div>
|
327 |
+
</div>
|
328 |
+
</div>
|
329 |
+
|
330 |
+
<script>
|
331 |
+
const form = document.getElementById("upload-form");
|
332 |
+
const fileInput = document.getElementById("file-input");
|
333 |
+
const fileDisplay = document.getElementById("file-display");
|
334 |
+
const fileName = document.getElementById("file-name");
|
335 |
+
const removeFile = document.getElementById("remove-file");
|
336 |
+
const questionList = document.getElementById("question-list");
|
337 |
+
const questionsCard = document.getElementById("questions-card");
|
338 |
+
const noQuestions = document.getElementById("no-questions");
|
339 |
+
const loading = document.getElementById("loading");
|
340 |
+
|
341 |
+
// File input handling
|
342 |
+
fileInput.addEventListener("change", (e) => {
|
343 |
+
if (fileInput.files.length > 0) {
|
344 |
+
fileName.textContent = fileInput.files[0].name;
|
345 |
+
fileDisplay.classList.add("active");
|
346 |
+
}
|
347 |
+
});
|
348 |
+
|
349 |
+
removeFile.addEventListener("click", () => {
|
350 |
+
fileInput.value = "";
|
351 |
+
fileDisplay.classList.remove("active");
|
352 |
+
});
|
353 |
+
|
354 |
+
// Form submission
|
355 |
+
form.addEventListener("submit", async (e) => {
|
356 |
+
e.preventDefault();
|
357 |
+
|
358 |
+
if (fileInput.files.length === 0) {
|
359 |
+
alert("Please select a resume file first");
|
360 |
+
return;
|
361 |
+
}
|
362 |
+
|
363 |
+
loading.classList.add("active");
|
364 |
+
|
365 |
+
try {
|
366 |
+
const formData = new FormData(form);
|
367 |
+
|
368 |
+
// Simulate API call with timeout
|
369 |
+
setTimeout(async () => {
|
370 |
+
// In a real application, this would be an actual API call
|
371 |
+
// const response = await fetch("/upload-resume", {
|
372 |
+
// method: "POST",
|
373 |
+
// body: formData
|
374 |
+
// });
|
375 |
+
// const questions = await response.json();
|
376 |
+
|
377 |
+
// Sample questions for demonstration
|
378 |
+
const questions = [
|
379 |
+
"Tell me about your experience with front-end development frameworks mentioned in your resume.",
|
380 |
+
"Can you explain a challenging project you worked on and how you approached it?",
|
381 |
+
"How do you stay updated with the latest technologies in your field?",
|
382 |
+
"What made you interested in applying for this position?",
|
383 |
+
"Describe a situation where you had to learn a new technology quickly. How did you approach it?",
|
384 |
+
"How do you handle tight deadlines and pressure?",
|
385 |
+
"Can you elaborate on your experience with team collaboration tools?",
|
386 |
+
"What is your process for debugging complex issues in your code?"
|
387 |
+
];
|
388 |
+
|
389 |
+
// Display questions
|
390 |
+
questionList.innerHTML = "";
|
391 |
+
questions.forEach((q, index) => {
|
392 |
+
const li = document.createElement("li");
|
393 |
+
li.className = "question-item";
|
394 |
+
li.innerHTML = `<span class="question-number">Q${index + 1}:</span> ${q}`;
|
395 |
+
questionList.appendChild(li);
|
396 |
+
});
|
397 |
+
|
398 |
+
loading.classList.remove("active");
|
399 |
+
questionsCard.style.display = "block";
|
400 |
+
noQuestions.style.display = "none";
|
401 |
+
}, 2000); // Simulate loading delay
|
402 |
+
|
403 |
+
} catch (error) {
|
404 |
+
console.error("Error:", error);
|
405 |
+
loading.classList.remove("active");
|
406 |
+
alert("There was an error processing your request. Please try again.");
|
407 |
+
}
|
408 |
+
});
|
409 |
+
</script>
|
410 |
+
</body>
|
411 |
+
</html>
|