File size: 8,622 Bytes
d23e732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import requests
import streamlit as st
from streamlit_lottie import st_lottie

st.set_page_config(page_title='Asia cup Analysis',layout='wide')
# st.title("Asia Cup Data")
# st.text(" ") 
# st.image("/home/tejas/Downloads/Asia_cup.jpg")

def load_lottieurl(url):
    r=requests.get(url)
    if r.status_code != 200:
        return None
    
    return r.json()


lottie_coding=load_lottieurl("https://assets6.lottiefiles.com/packages/lf20_1fXD2hXInk.json")
with st.container():
#     right_column=st.columns(2)
#     with right_column:
    st_lottie(lottie_coding, height=300, key='coding')
    
# st.markdown("""---""")

# st.beta_columns
import streamlit as st 
import pandas as pd  
import numpy as np
import pickle  #to load a saved modelimport base64  #to open .gif files in streamlit app


import pandas as pd
import numpy as np
from matplotlib import pyplot as plt

df=pd.read_csv('/home/tejas/Asia_cup/asiacup.csv')
col1=['Opponent','Format','Selection','Avg Bat Strike Rate','Highest Score','Wicket Taken','Given Extras','Highest Individual wicket','Run Rate','Extras']
df1=df.drop(col1,axis=1)
Df=df1.head(10)

# with st.sidebar:
#     st.table(Df)
df2=df1.dropna()
df2.head(10)
# option = st.selectbox(
#     'How would you like to see?',
#     (' Number of times Team won the toss.', 'Number of times Team won the result.', 'Number of matches done on different ground.',"Top 5 player of Match."," Number of times the Team get all out."))
st.markdown("# CHOOSE THE OPTION")


tab1, tab2, tab3, tab4, tab5 = st.tabs(["Number of times Team won the toss.", "Number of times Team won the result.", "Number of matches done on different ground.","Top 5 player of Match."," Number of times the Team get all out."])

with tab1:
    st.markdown("Q1.} Number of times Team won the toss.")
    df3=df2[df2['Toss']=='Win']
    df3.head(10)
    df4=df3['Team'].value_counts()
    df4
    chart = df4.plot.bar(y='Team', figsize=(10, 5),xlabel='Teams',ylabel='Toss_winning')
    st.line_chart(df4)

with tab2:
    st.markdown("Q2.}Number of times Team won the result.")
    df5=df2[df2['Result']=='Win']
    df5.head(10)
    df6=df5['Team'].value_counts()
    df6
    st.bar_chart(df6)
    
with tab3:
    st.markdown("Q3.}Number of matches done on different ground")
    df7=df1['Ground'].value_counts()
    df7
    st.bar_chart(df7)
    
with tab4:
    st.markdown("Q4.}Top 5 player of Match")
    df8=df1['Player Of The Match'].value_counts()
    df9=df8.head(5)
    df9
    st.bar_chart(df9)
    
with tab5:
    st.markdown("Q5.} Number of times the Team get all out.")
    df10=df1[df1['Wicket Lost']==10.0]
    df11=df10['Team'].value_counts()
    df11
    st.line_chart(df11)
    
st.markdown("""---""")
    
# st.radio('Which is your favourite Team?',['India','Sri Lanka','Pakisthan','Bangladesh','Afghanistan','Hong Kong','UAE'])
# st.markdown("""---""")
st.markdown("# #Number of times a Team won and Loss the Match.")

df12=df[['Team','Result']]
# df12
df13=df12[['Team', 'Result']].value_counts().reset_index(name='count')
df14=df13.sort_values(by=['Result'])
# df14
df15=df14.drop([13,16,12,15,14])
# df15
st.bar_chart(df15,x='Team',y='count',height=500)

st.markdown("""---""")

st.markdown("# #Run scored by different Teams in different Year")

df16=df[['Team','Run Scored','Year']]
# df16
df17=df16.sort_values(by=['Team'])
# df17
df18=df17.drop([56,57])
df18
df19=df18[df18['Team']=='Afghanistan']
df20=df19.mean()
# df20
# st.markdown("""---""")

df21=df18[df18['Team']=='Bangladesh']
df22=df21.mean()
# df22
# st.markdown("""---""")
df23=df18[df18['Team']=='Hong Kong']
df24=df23.mean()
# df24
# st.markdown("""---""")
df25=df18[df18['Team']=='India']
df26=df25.mean()
# df26
df27=df18[df18['Team']=='Pakistan']
df28=df27.mean()
# df28
# st.markdown("""---""")
df29=df18[df18['Team']=='Sri Lanka']
df30=df29.mean()
# df30
# # st.line_chart(df19, y='Run Scored',x='Year')
# df20=df18[df18['Team']=='Sri Lanka']
# # st.line_chart(df19, y='Run Scored',x='Year')
# df21=df18[df18['Team']=='Pakisthan']
# # st.line_chart(df19, y='Run Scored',x='Year')

# # st.line_chart(df19, y='Run Scored',x='Year')
st.markdown("""---""")
st.markdown("# #Average run scored by the Team in Asia Cup")

data=[['Afghanistan',187.42],['Bangladesh',185.06],['Hong Kong',135.75],['India',213.68],['Pakistan',217.55],['Sri Lanka',212.55]]
df31 = pd.DataFrame(data, columns=['Team', 'Average_score'])
df31
# st.bar_chart(df31, y='Average_score',x='Team')
st.markdown("""---""")

import streamlit as st
import extra_streamlit_components as stx
st.markdown("# #Details of match of team India differentiated by runs.")

# chosen_id1= stx.tab_bar(Team=[
#     stx.TabBarItemData(id="Tab1", title='India'),
#     stx.TabBarItemData(id="Tab2", title="Sri Lanka"),


chosen_id= stx.tab_bar(data=[
    stx.TabBarItemData(id="tab1", title="Below 100", description="Match Details of Team India getting less than 100 runs"),
#     st.text(""),
    stx.TabBarItemData(id="tab2", title="100-200", description="Match Details of Team India getting runs between 100 and 200"),
#     st.text(""),
    stx.TabBarItemData(id="tab3", title="200-300", description="Match Details of Team India getting runs between 200 and 300"),
#     st.text(""),
    stx.TabBarItemData(id="tab4", title="Above 300", description=" Match Details of Team India getting more than 300 runs")])


placeholder = st.container() 

if chosen_id == "tab1":
    placeholder.markdown(f"## Welcome to `{chosen_id}`")
    placeholder.info(f"Since we are in {chosen_id}, So details of matches of team India when they scored below 100 is:")
    df32=df[df['Team']=='India']
    df33=df32[df32['Run Scored']<100.0000]
#     with st.sidebar:
    st.table(df33)
    
    
#     placeholder.image("https://placekitten.com/g/400/200",caption=f"Meowhy from {chosen_id}")
#     placeholder.slider("A slider",0,10,5,1)
#     placeholder.checkbox("A checkbox",True)
#     placeholder.button("A button")

elif chosen_id == "tab2":
    placeholder.markdown(f"## Welcome to `{chosen_id}`")
    placeholder.info(f"Since we are in {chosen_id} , So details of matches of team India when then scored between 100 and 200 is:")
    df34=df[df['Team']=='India']
    df35=df34[(df34['Run Scored']>100.0000)&(df34['Run Scored']<200.0000)]
#     with st.sidebar:
    st.table(df35)

elif chosen_id == "tab3":
    placeholder.markdown(f"## Welcome to `{chosen_id}`")
    placeholder.info(f"Since we are in {chosen_id}, So details of matches of team India when they scored between 200 and 300 is:")
    df36=df[df['Team']=='India']
    df37=df36[(df36['Run Scored']>200.0000)&(df36['Run Scored']<300.0000)]
#     with st.sidebar:/
    st.table(df37)
         
elif chosen_id == "tab4":
    placeholder.markdown(f"## Welcome to `{chosen_id}`")
    placeholder.info(f"Since we are in {chosen_id}, So details of matches of team India when they scored above 300 is:")
    df38=df[df['Team']=='India']
    df39=df38[df38['Run Scored']>300.0000]
#     with st.sidebar:
    st.table(df39)
        
# import streamlit as st
# from streamlit_javascript import st_javascript

# url = st_javascript("await fetch('').then(r => window.parent.location.href)")

# st.write(url)        
# st.markdown("""
# **** 
# ### Don't forget to `pip install extra_streamlit_components`
# # """)
# df23=[['df19','df20']]
# df23
# df23 = pd.DataFrame(columns=['df19','df20'])
# st.line_chart(df23)

# columns=['df19','df20']
# result = df16.loc[df16['India'] == 1, 'Run Scored'].sum()
# result

# st.selectbox('Which is your favourite Team',['India','Sri Lanka','Pakisthan','Bangladesh','Afghniastan','Hong Kong','UAE'])    
# # st.write('You selected:', option)
# st.markdown("""---""")
# st.markdown("Q1.} Number of times Team won the toss.")
# df3=df2[df2['Toss']=='Win']
# df3.head(10)
# df4=df3['Team'].value_counts()
# df4
# chart = df4.plot.bar(y='Team', figsize=(10, 5),xlabel='Teams',ylabel='Toss_winning')
# st.line_chart(df4)
# st.markdown("""---""")
# st.markdown("Q2.}Number of times Team won the result.")
# df5=df2[df2['Result']=='Win']
# df5.head(10)
# df6=df5['Team'].value_counts()
# df6
# st.bar_chart(df6)
# st.markdown("""---""")
# st.markdown("Q3.}Number of matches done on different ground")
# df7=df1['Ground'].value_counts()
# df7
# st.bar_chart(df7)
# st.markdown("""---""")
# st.markdown("Q4.}Top 5 player of Match")
# df8=df1['Player Of The Match'].value_counts()
# # df8
# df9=df8.head(5)
# df9
# st.bar_chart(df9)
# st.markdown("""---""")
# st.markdown("Q5.} Number of times the Team get all out.")
# df10=df1[df1['Wicket Lost']==10.0]
# # df10
# df11=df10['Team'].value_counts()
# df11
# st.line_chart(df11)