Spaces:
Build error
Build error
File size: 8,622 Bytes
d23e732 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import requests
import streamlit as st
from streamlit_lottie import st_lottie
st.set_page_config(page_title='Asia cup Analysis',layout='wide')
# st.title("Asia Cup Data")
# st.text(" ")
# st.image("/home/tejas/Downloads/Asia_cup.jpg")
def load_lottieurl(url):
r=requests.get(url)
if r.status_code != 200:
return None
return r.json()
lottie_coding=load_lottieurl("https://assets6.lottiefiles.com/packages/lf20_1fXD2hXInk.json")
with st.container():
# right_column=st.columns(2)
# with right_column:
st_lottie(lottie_coding, height=300, key='coding')
# st.markdown("""---""")
# st.beta_columns
import streamlit as st
import pandas as pd
import numpy as np
import pickle #to load a saved modelimport base64 #to open .gif files in streamlit app
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
df=pd.read_csv('/home/tejas/Asia_cup/asiacup.csv')
col1=['Opponent','Format','Selection','Avg Bat Strike Rate','Highest Score','Wicket Taken','Given Extras','Highest Individual wicket','Run Rate','Extras']
df1=df.drop(col1,axis=1)
Df=df1.head(10)
# with st.sidebar:
# st.table(Df)
df2=df1.dropna()
df2.head(10)
# option = st.selectbox(
# 'How would you like to see?',
# (' Number of times Team won the toss.', 'Number of times Team won the result.', 'Number of matches done on different ground.',"Top 5 player of Match."," Number of times the Team get all out."))
st.markdown("# CHOOSE THE OPTION")
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Number of times Team won the toss.", "Number of times Team won the result.", "Number of matches done on different ground.","Top 5 player of Match."," Number of times the Team get all out."])
with tab1:
st.markdown("Q1.} Number of times Team won the toss.")
df3=df2[df2['Toss']=='Win']
df3.head(10)
df4=df3['Team'].value_counts()
df4
chart = df4.plot.bar(y='Team', figsize=(10, 5),xlabel='Teams',ylabel='Toss_winning')
st.line_chart(df4)
with tab2:
st.markdown("Q2.}Number of times Team won the result.")
df5=df2[df2['Result']=='Win']
df5.head(10)
df6=df5['Team'].value_counts()
df6
st.bar_chart(df6)
with tab3:
st.markdown("Q3.}Number of matches done on different ground")
df7=df1['Ground'].value_counts()
df7
st.bar_chart(df7)
with tab4:
st.markdown("Q4.}Top 5 player of Match")
df8=df1['Player Of The Match'].value_counts()
df9=df8.head(5)
df9
st.bar_chart(df9)
with tab5:
st.markdown("Q5.} Number of times the Team get all out.")
df10=df1[df1['Wicket Lost']==10.0]
df11=df10['Team'].value_counts()
df11
st.line_chart(df11)
st.markdown("""---""")
# st.radio('Which is your favourite Team?',['India','Sri Lanka','Pakisthan','Bangladesh','Afghanistan','Hong Kong','UAE'])
# st.markdown("""---""")
st.markdown("# #Number of times a Team won and Loss the Match.")
df12=df[['Team','Result']]
# df12
df13=df12[['Team', 'Result']].value_counts().reset_index(name='count')
df14=df13.sort_values(by=['Result'])
# df14
df15=df14.drop([13,16,12,15,14])
# df15
st.bar_chart(df15,x='Team',y='count',height=500)
st.markdown("""---""")
st.markdown("# #Run scored by different Teams in different Year")
df16=df[['Team','Run Scored','Year']]
# df16
df17=df16.sort_values(by=['Team'])
# df17
df18=df17.drop([56,57])
df18
df19=df18[df18['Team']=='Afghanistan']
df20=df19.mean()
# df20
# st.markdown("""---""")
df21=df18[df18['Team']=='Bangladesh']
df22=df21.mean()
# df22
# st.markdown("""---""")
df23=df18[df18['Team']=='Hong Kong']
df24=df23.mean()
# df24
# st.markdown("""---""")
df25=df18[df18['Team']=='India']
df26=df25.mean()
# df26
df27=df18[df18['Team']=='Pakistan']
df28=df27.mean()
# df28
# st.markdown("""---""")
df29=df18[df18['Team']=='Sri Lanka']
df30=df29.mean()
# df30
# # st.line_chart(df19, y='Run Scored',x='Year')
# df20=df18[df18['Team']=='Sri Lanka']
# # st.line_chart(df19, y='Run Scored',x='Year')
# df21=df18[df18['Team']=='Pakisthan']
# # st.line_chart(df19, y='Run Scored',x='Year')
# # st.line_chart(df19, y='Run Scored',x='Year')
st.markdown("""---""")
st.markdown("# #Average run scored by the Team in Asia Cup")
data=[['Afghanistan',187.42],['Bangladesh',185.06],['Hong Kong',135.75],['India',213.68],['Pakistan',217.55],['Sri Lanka',212.55]]
df31 = pd.DataFrame(data, columns=['Team', 'Average_score'])
df31
# st.bar_chart(df31, y='Average_score',x='Team')
st.markdown("""---""")
import streamlit as st
import extra_streamlit_components as stx
st.markdown("# #Details of match of team India differentiated by runs.")
# chosen_id1= stx.tab_bar(Team=[
# stx.TabBarItemData(id="Tab1", title='India'),
# stx.TabBarItemData(id="Tab2", title="Sri Lanka"),
chosen_id= stx.tab_bar(data=[
stx.TabBarItemData(id="tab1", title="Below 100", description="Match Details of Team India getting less than 100 runs"),
# st.text(""),
stx.TabBarItemData(id="tab2", title="100-200", description="Match Details of Team India getting runs between 100 and 200"),
# st.text(""),
stx.TabBarItemData(id="tab3", title="200-300", description="Match Details of Team India getting runs between 200 and 300"),
# st.text(""),
stx.TabBarItemData(id="tab4", title="Above 300", description=" Match Details of Team India getting more than 300 runs")])
placeholder = st.container()
if chosen_id == "tab1":
placeholder.markdown(f"## Welcome to `{chosen_id}`")
placeholder.info(f"Since we are in {chosen_id}, So details of matches of team India when they scored below 100 is:")
df32=df[df['Team']=='India']
df33=df32[df32['Run Scored']<100.0000]
# with st.sidebar:
st.table(df33)
# placeholder.image("https://placekitten.com/g/400/200",caption=f"Meowhy from {chosen_id}")
# placeholder.slider("A slider",0,10,5,1)
# placeholder.checkbox("A checkbox",True)
# placeholder.button("A button")
elif chosen_id == "tab2":
placeholder.markdown(f"## Welcome to `{chosen_id}`")
placeholder.info(f"Since we are in {chosen_id} , So details of matches of team India when then scored between 100 and 200 is:")
df34=df[df['Team']=='India']
df35=df34[(df34['Run Scored']>100.0000)&(df34['Run Scored']<200.0000)]
# with st.sidebar:
st.table(df35)
elif chosen_id == "tab3":
placeholder.markdown(f"## Welcome to `{chosen_id}`")
placeholder.info(f"Since we are in {chosen_id}, So details of matches of team India when they scored between 200 and 300 is:")
df36=df[df['Team']=='India']
df37=df36[(df36['Run Scored']>200.0000)&(df36['Run Scored']<300.0000)]
# with st.sidebar:/
st.table(df37)
elif chosen_id == "tab4":
placeholder.markdown(f"## Welcome to `{chosen_id}`")
placeholder.info(f"Since we are in {chosen_id}, So details of matches of team India when they scored above 300 is:")
df38=df[df['Team']=='India']
df39=df38[df38['Run Scored']>300.0000]
# with st.sidebar:
st.table(df39)
# import streamlit as st
# from streamlit_javascript import st_javascript
# url = st_javascript("await fetch('').then(r => window.parent.location.href)")
# st.write(url)
# st.markdown("""
# ****
# ### Don't forget to `pip install extra_streamlit_components`
# # """)
# df23=[['df19','df20']]
# df23
# df23 = pd.DataFrame(columns=['df19','df20'])
# st.line_chart(df23)
# columns=['df19','df20']
# result = df16.loc[df16['India'] == 1, 'Run Scored'].sum()
# result
# st.selectbox('Which is your favourite Team',['India','Sri Lanka','Pakisthan','Bangladesh','Afghniastan','Hong Kong','UAE'])
# # st.write('You selected:', option)
# st.markdown("""---""")
# st.markdown("Q1.} Number of times Team won the toss.")
# df3=df2[df2['Toss']=='Win']
# df3.head(10)
# df4=df3['Team'].value_counts()
# df4
# chart = df4.plot.bar(y='Team', figsize=(10, 5),xlabel='Teams',ylabel='Toss_winning')
# st.line_chart(df4)
# st.markdown("""---""")
# st.markdown("Q2.}Number of times Team won the result.")
# df5=df2[df2['Result']=='Win']
# df5.head(10)
# df6=df5['Team'].value_counts()
# df6
# st.bar_chart(df6)
# st.markdown("""---""")
# st.markdown("Q3.}Number of matches done on different ground")
# df7=df1['Ground'].value_counts()
# df7
# st.bar_chart(df7)
# st.markdown("""---""")
# st.markdown("Q4.}Top 5 player of Match")
# df8=df1['Player Of The Match'].value_counts()
# # df8
# df9=df8.head(5)
# df9
# st.bar_chart(df9)
# st.markdown("""---""")
# st.markdown("Q5.} Number of times the Team get all out.")
# df10=df1[df1['Wicket Lost']==10.0]
# # df10
# df11=df10['Team'].value_counts()
# df11
# st.line_chart(df11)
|