import requests import streamlit as st from streamlit_lottie import st_lottie st.set_page_config(page_title='Asia cup Analysis',layout='wide') # st.title("Asia Cup Data") # st.text(" ") # st.image("/home/tejas/Downloads/Asia_cup.jpg") def load_lottieurl(url): r=requests.get(url) if r.status_code != 200: return None return r.json() lottie_coding=load_lottieurl("https://assets6.lottiefiles.com/packages/lf20_1fXD2hXInk.json") with st.container(): # right_column=st.columns(2) # with right_column: st_lottie(lottie_coding, height=300, key='coding') # st.markdown("""---""") # st.beta_columns import streamlit as st import pandas as pd import numpy as np import pickle #to load a saved modelimport base64 #to open .gif files in streamlit app import pandas as pd import numpy as np from matplotlib import pyplot as plt df=pd.read_csv('/home/tejas/Asia_cup/asiacup.csv') col1=['Opponent','Format','Selection','Avg Bat Strike Rate','Highest Score','Wicket Taken','Given Extras','Highest Individual wicket','Run Rate','Extras'] df1=df.drop(col1,axis=1) Df=df1.head(10) # with st.sidebar: # st.table(Df) df2=df1.dropna() df2.head(10) # option = st.selectbox( # 'How would you like to see?', # (' Number of times Team won the toss.', 'Number of times Team won the result.', 'Number of matches done on different ground.',"Top 5 player of Match."," Number of times the Team get all out.")) st.markdown("# CHOOSE THE OPTION") tab1, tab2, tab3, tab4, tab5 = st.tabs(["Number of times Team won the toss.", "Number of times Team won the result.", "Number of matches done on different ground.","Top 5 player of Match."," Number of times the Team get all out."]) with tab1: st.markdown("Q1.} Number of times Team won the toss.") df3=df2[df2['Toss']=='Win'] df3.head(10) df4=df3['Team'].value_counts() df4 chart = df4.plot.bar(y='Team', figsize=(10, 5),xlabel='Teams',ylabel='Toss_winning') st.line_chart(df4) with tab2: st.markdown("Q2.}Number of times Team won the result.") df5=df2[df2['Result']=='Win'] df5.head(10) df6=df5['Team'].value_counts() df6 st.bar_chart(df6) with tab3: st.markdown("Q3.}Number of matches done on different ground") df7=df1['Ground'].value_counts() df7 st.bar_chart(df7) with tab4: st.markdown("Q4.}Top 5 player of Match") df8=df1['Player Of The Match'].value_counts() df9=df8.head(5) df9 st.bar_chart(df9) with tab5: st.markdown("Q5.} Number of times the Team get all out.") df10=df1[df1['Wicket Lost']==10.0] df11=df10['Team'].value_counts() df11 st.line_chart(df11) st.markdown("""---""") # st.radio('Which is your favourite Team?',['India','Sri Lanka','Pakisthan','Bangladesh','Afghanistan','Hong Kong','UAE']) # st.markdown("""---""") st.markdown("# #Number of times a Team won and Loss the Match.") df12=df[['Team','Result']] # df12 df13=df12[['Team', 'Result']].value_counts().reset_index(name='count') df14=df13.sort_values(by=['Result']) # df14 df15=df14.drop([13,16,12,15,14]) # df15 st.bar_chart(df15,x='Team',y='count',height=500) st.markdown("""---""") st.markdown("# #Run scored by different Teams in different Year") df16=df[['Team','Run Scored','Year']] # df16 df17=df16.sort_values(by=['Team']) # df17 df18=df17.drop([56,57]) df18 df19=df18[df18['Team']=='Afghanistan'] df20=df19.mean() # df20 # st.markdown("""---""") df21=df18[df18['Team']=='Bangladesh'] df22=df21.mean() # df22 # st.markdown("""---""") df23=df18[df18['Team']=='Hong Kong'] df24=df23.mean() # df24 # st.markdown("""---""") df25=df18[df18['Team']=='India'] df26=df25.mean() # df26 df27=df18[df18['Team']=='Pakistan'] df28=df27.mean() # df28 # st.markdown("""---""") df29=df18[df18['Team']=='Sri Lanka'] df30=df29.mean() # df30 # # st.line_chart(df19, y='Run Scored',x='Year') # df20=df18[df18['Team']=='Sri Lanka'] # # st.line_chart(df19, y='Run Scored',x='Year') # df21=df18[df18['Team']=='Pakisthan'] # # st.line_chart(df19, y='Run Scored',x='Year') # # st.line_chart(df19, y='Run Scored',x='Year') st.markdown("""---""") st.markdown("# #Average run scored by the Team in Asia Cup") data=[['Afghanistan',187.42],['Bangladesh',185.06],['Hong Kong',135.75],['India',213.68],['Pakistan',217.55],['Sri Lanka',212.55]] df31 = pd.DataFrame(data, columns=['Team', 'Average_score']) df31 # st.bar_chart(df31, y='Average_score',x='Team') st.markdown("""---""") import streamlit as st import extra_streamlit_components as stx st.markdown("# #Details of match of team India differentiated by runs.") # chosen_id1= stx.tab_bar(Team=[ # stx.TabBarItemData(id="Tab1", title='India'), # stx.TabBarItemData(id="Tab2", title="Sri Lanka"), chosen_id= stx.tab_bar(data=[ stx.TabBarItemData(id="tab1", title="Below 100", description="Match Details of Team India getting less than 100 runs"), # st.text(""), stx.TabBarItemData(id="tab2", title="100-200", description="Match Details of Team India getting runs between 100 and 200"), # st.text(""), stx.TabBarItemData(id="tab3", title="200-300", description="Match Details of Team India getting runs between 200 and 300"), # st.text(""), stx.TabBarItemData(id="tab4", title="Above 300", description=" Match Details of Team India getting more than 300 runs")]) placeholder = st.container() if chosen_id == "tab1": placeholder.markdown(f"## Welcome to `{chosen_id}`") placeholder.info(f"Since we are in {chosen_id}, So details of matches of team India when they scored below 100 is:") df32=df[df['Team']=='India'] df33=df32[df32['Run Scored']<100.0000] # with st.sidebar: st.table(df33) # placeholder.image("https://placekitten.com/g/400/200",caption=f"Meowhy from {chosen_id}") # placeholder.slider("A slider",0,10,5,1) # placeholder.checkbox("A checkbox",True) # placeholder.button("A button") elif chosen_id == "tab2": placeholder.markdown(f"## Welcome to `{chosen_id}`") placeholder.info(f"Since we are in {chosen_id} , So details of matches of team India when then scored between 100 and 200 is:") df34=df[df['Team']=='India'] df35=df34[(df34['Run Scored']>100.0000)&(df34['Run Scored']<200.0000)] # with st.sidebar: st.table(df35) elif chosen_id == "tab3": placeholder.markdown(f"## Welcome to `{chosen_id}`") placeholder.info(f"Since we are in {chosen_id}, So details of matches of team India when they scored between 200 and 300 is:") df36=df[df['Team']=='India'] df37=df36[(df36['Run Scored']>200.0000)&(df36['Run Scored']<300.0000)] # with st.sidebar:/ st.table(df37) elif chosen_id == "tab4": placeholder.markdown(f"## Welcome to `{chosen_id}`") placeholder.info(f"Since we are in {chosen_id}, So details of matches of team India when they scored above 300 is:") df38=df[df['Team']=='India'] df39=df38[df38['Run Scored']>300.0000] # with st.sidebar: st.table(df39) # import streamlit as st # from streamlit_javascript import st_javascript # url = st_javascript("await fetch('').then(r => window.parent.location.href)") # st.write(url) # st.markdown(""" # **** # ### Don't forget to `pip install extra_streamlit_components` # # """) # df23=[['df19','df20']] # df23 # df23 = pd.DataFrame(columns=['df19','df20']) # st.line_chart(df23) # columns=['df19','df20'] # result = df16.loc[df16['India'] == 1, 'Run Scored'].sum() # result # st.selectbox('Which is your favourite Team',['India','Sri Lanka','Pakisthan','Bangladesh','Afghniastan','Hong Kong','UAE']) # # st.write('You selected:', option) # st.markdown("""---""") # st.markdown("Q1.} Number of times Team won the toss.") # df3=df2[df2['Toss']=='Win'] # df3.head(10) # df4=df3['Team'].value_counts() # df4 # chart = df4.plot.bar(y='Team', figsize=(10, 5),xlabel='Teams',ylabel='Toss_winning') # st.line_chart(df4) # st.markdown("""---""") # st.markdown("Q2.}Number of times Team won the result.") # df5=df2[df2['Result']=='Win'] # df5.head(10) # df6=df5['Team'].value_counts() # df6 # st.bar_chart(df6) # st.markdown("""---""") # st.markdown("Q3.}Number of matches done on different ground") # df7=df1['Ground'].value_counts() # df7 # st.bar_chart(df7) # st.markdown("""---""") # st.markdown("Q4.}Top 5 player of Match") # df8=df1['Player Of The Match'].value_counts() # # df8 # df9=df8.head(5) # df9 # st.bar_chart(df9) # st.markdown("""---""") # st.markdown("Q5.} Number of times the Team get all out.") # df10=df1[df1['Wicket Lost']==10.0] # # df10 # df11=df10['Team'].value_counts() # df11 # st.line_chart(df11)