File size: 7,821 Bytes
3006f55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc75a0
 
3006f55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from typing import List, Dict, Any, Tuple, Optional
import yaml
import os

cwd = os.getcwd()
os.environ["PYTORCH_TRANSFORMERS_CACHE"] = os.path.join(
    cwd, "huggingface/transformers/"
)
os.environ["TRANSFORMERS_CACHE"] = os.path.join(cwd, "huggingface/transformers/")
os.environ["HF_HOME"] = os.path.join(cwd, "huggingface/")
import logging
import json
from time import sleep, time

import requests
import streamlit as st

from pathlib import Path

from haystack.pipelines.base import Pipeline
from haystack.nodes import EmbeddingRetriever, Shaper
from haystack.document_stores import FAISSDocumentStore, InMemoryDocumentStore
from haystack.errors import PipelineConfigError
# from googletrans import Translator
import openai

openai.api_key = st.secrets["gpt35_api_key"]

logger = logging.getLogger(__name__)
pipelines = None

system_prompt_template = """You are an US experienced immigration attorney.  Your answer should be in your own words, be detailed and be no longer than 350 words. 
You should ask for more information or clarifications to give a more precise answer for an each client's case. 
Synthesize a comprehensive answer from your knowledge and the following topk most relevant paragraphs and the given question.
Do not tell them to have a consultation with a certified attorney. Clients have been warned that you are our assistant and that's enough. 
Give an answer in the {0} language.
"""
users_prompt_template = """
Paragraphs: {0}

Question: {1}
"""
# Since each instance of FAISSDocumentStore creates an in-memory FAISS index, the Indexing & Query Pipelines would
# end up with different indices. The same applies for InMemoryDocumentStore.
UNSUPPORTED_DOC_STORES = (FAISSDocumentStore, InMemoryDocumentStore)

API_ENDPOINT = os.getenv("API_ENDPOINT", "http://localhost:8000")
STATUS = "initialized"
HS_VERSION = "hs_version"
DOC_REQUEST = "query"
DOC_FEEDBACK = "feedback"
DOC_UPLOAD = "file-upload"

# translator = Translator()


def query(
    pipelines, query, filters={}, language="en", top_k_reader=3, top_k_retriever=5
) -> Tuple[List[Dict[str, Any]], Dict[str, str]]:
    """
    Send a query to the REST API and parse the answer.
    Returns both a ready-to-use representation of the results and the raw JSON.
    """
    query_pipeline = pipelines.get("query_pipeline", None)
    start_time = time()

    params = {
        "retriever": {"top_k": top_k_retriever},
    }

    lang = language.lower() or "english"

    response = query_pipeline.run(
        query=query,
        params=params,
    )
    context = ""
    sources = []
    for doc in response["documents"]:
        doc = doc.to_dict()
        doc_name = doc["meta"].get("name")
        doc_url = doc["meta"].get("url")
        source = (
            "https://www.uscis.gov/sites/default/files/document/forms/" + doc_name
            if doc_name
            else doc_url
        )
        if not source.endswith('.txt'):
            sources.append(source)
        if len(context)<top_k_reader:
            context += " " + doc.get("content")
    # Ensure answers and documents exist, even if they're empty lists
    if not "documents" in response:
        response["documents"] = []

    # prepare openAI api call
    messages = []
    system_prompt = system_prompt_template.format(lang)
    user_prompt = users_prompt_template.format(context, response["query"])
    messages.append({"role": "system", "content": system_prompt})
    messages.append({"role": "user", "content": user_prompt})

    openai_response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo", messages=messages
    )
    bot_response = openai_response["choices"][0]["message"]["content"]
    response["answers"] = [bot_response]
    logger.info(
        json.dumps(
            {
                "request": query,
                "response": response,
                "time": f"{(time() - start_time):.2f}",
            },
            default=str,
        )
    )

    # Format response
    results = []
    answers = response["answers"]
    documents = response["documents"]
    for answer, doc in zip(answers, documents):
        doc = doc.to_dict()
        if answer:
            context = doc.get("content")
            results.append(
                {
                    "context": "..." + context if context else "",
                    "answer": answer,
                    "source": "\n".join(sources),
                    "_raw": answer,
                }
            )
        else:
            results.append({"context": None, "answer": None, "_raw": answer})
    return results, response


def send_feedback(
    query, answer_obj, is_correct_answer, is_correct_document, document
) -> None:
    """
    Send a feedback (label) to the REST API
    """
    url = f"{API_ENDPOINT}/{DOC_FEEDBACK}"
    req = {
        "query": query,
        "document": document,
        "is_correct_answer": is_correct_answer,
        "is_correct_document": is_correct_document,
        "origin": "user-feedback",
        "answer": answer_obj,
    }
    response_raw = requests.post(url, json=req)
    if response_raw.status_code >= 400:
        raise ValueError(
            f"An error was returned [code {response_raw.status_code}]: {response_raw.json()}"
        )


def upload_doc(file):
    url = f"{API_ENDPOINT}/{DOC_UPLOAD}"
    files = [("files", file)]
    response = requests.post(url, files=files).json()
    return response


def get_backlink(result) -> Tuple[Optional[str], Optional[str]]:
    if result.get("document", None):
        doc = result["document"]
        if isinstance(doc, dict):
            if doc.get("meta", None):
                if isinstance(doc["meta"], dict):
                    if doc["meta"].get("url", None) and doc["meta"].get("title", None):
                        return doc["meta"]["url"], doc["meta"]["title"]
    return None, None


def setup_pipelines() -> Dict[str, Any]:
    # Re-import the configuration variables
    import config  # pylint: disable=reimported

    pipelines = {}
    document_store = FAISSDocumentStore(
        faiss_config_path="faiss.json", faiss_index_path="faiss.index"
    )
    retriever = EmbeddingRetriever(
        document_store=document_store,
        batch_size=128,
        embedding_model="ada",
        api_key=st.secrets["api_key"],
        max_seq_len=1024,
    )

    shaper = Shaper(
        func="join_documents", inputs={"documents": "documents"}, outputs=["documents"]
    )

    pipe = Pipeline()
    pipe.add_node(component=retriever, name="retriever", inputs=["Query"])

    logging.info(f"Loaded pipeline nodes: {pipe.graph.nodes.keys()}")
    pipelines["query_pipeline"] = pipe

    # Find document store

    logging.info(f"Loaded docstore: {document_store}")
    pipelines["document_store"] = document_store

    # Load indexing pipeline (if available)
    try:
        indexing_pipeline = Pipeline.load_from_yaml(
            Path(config.PIPELINE_YAML_PATH), pipeline_name=config.INDEXING_PIPELINE_NAME
        )
        docstore = indexing_pipeline.get_document_store()
        if isinstance(docstore, UNSUPPORTED_DOC_STORES):
            indexing_pipeline = None
            raise PipelineConfigError(
                "Indexing pipelines with FAISSDocumentStore or InMemoryDocumentStore are not supported by the REST APIs."
            )

    except PipelineConfigError as e:
        indexing_pipeline = None
        logger.error(f"{e.message}\nFile Upload API will not be available.")

    finally:
        pipelines["indexing_pipeline"] = indexing_pipeline

    # Create directory for uploaded files
    os.makedirs(config.FILE_UPLOAD_PATH, exist_ok=True)

    return pipelines


def get_pipelines():
    global pipelines  # pylint: disable=global-statement
    if not pipelines:
        pipelines = setup_pipelines()
    return pipelines