Spaces:
Build error
Build error
Commit
·
ab287b7
1
Parent(s):
0fa63ef
update
Browse files
app.py
CHANGED
|
@@ -17,12 +17,19 @@ _DESCRIPTION = '''
|
|
| 17 |
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.03453"><img src="https://img.shields.io/badge/2309.03453-f9f7f7?logo="></a>
|
| 18 |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/liuyuan-pal/SyncDreamer'><img src='https://img.shields.io/github/stars/liuyuan-pal/SyncDreamer?style=social' /></a>
|
| 19 |
</div>
|
| 20 |
-
Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
_USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given."
|
| 22 |
_USER_GUIDE1 = "Step1: Please select a crop size using the glider."
|
| 23 |
_USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button."
|
| 24 |
_USER_GUIDE3 = "Generated multiview images are shown below!"
|
| 25 |
|
|
|
|
| 26 |
|
| 27 |
def mask_prediction(mask_predictor, image_in: Image.Image):
|
| 28 |
if image_in.mode=='RGBA':
|
|
@@ -56,11 +63,16 @@ def generate(model, batch_view_num, sample_num, cfg_scale, seed, image_input, el
|
|
| 56 |
elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
|
| 57 |
data = {"input_image": image_input, "input_elevation": elevation_input}
|
| 58 |
for k, v in data.items():
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
| 64 |
|
| 65 |
B, N, _, H, W = x_sample.shape
|
| 66 |
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
|
|
@@ -80,12 +92,15 @@ def run_demo():
|
|
| 80 |
ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
|
| 81 |
config = OmegaConf.load(cfg)
|
| 82 |
# model = None
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
# init sam model
|
| 91 |
mask_predictor = None # sam_init(device_idx)
|
|
@@ -121,10 +136,12 @@ def run_demo():
|
|
| 121 |
examples_per_page=40
|
| 122 |
)
|
| 123 |
|
|
|
|
| 124 |
with gr.Column(scale=1):
|
| 125 |
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
|
| 126 |
crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
|
| 127 |
crop_btn = gr.Button('Crop the image', variant='primary', interactive=True)
|
|
|
|
| 128 |
|
| 129 |
with gr.Column(scale=1):
|
| 130 |
input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False)
|
|
@@ -134,6 +151,7 @@ def run_demo():
|
|
| 134 |
# batch_view_num = gr.Slider(1, 16, 8, step=1, label='', interactive=True)
|
| 135 |
seed = gr.Number(6033, label='Random seed', interactive=True)
|
| 136 |
run_btn = gr.Button('Run Generation', variant='primary', interactive=True)
|
|
|
|
| 137 |
|
| 138 |
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
|
| 139 |
|
|
|
|
| 17 |
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.03453"><img src="https://img.shields.io/badge/2309.03453-f9f7f7?logo="></a>
|
| 18 |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/liuyuan-pal/SyncDreamer'><img src='https://img.shields.io/github/stars/liuyuan-pal/SyncDreamer?style=social' /></a>
|
| 19 |
</div>
|
| 20 |
+
Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss
|
| 21 |
+
|
| 22 |
+
1. Upload the image.
|
| 23 |
+
2. Predict the mask for the foreground object.
|
| 24 |
+
3. Crop the foreground object.
|
| 25 |
+
4. Generate multiview images.
|
| 26 |
+
'''
|
| 27 |
_USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given."
|
| 28 |
_USER_GUIDE1 = "Step1: Please select a crop size using the glider."
|
| 29 |
_USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button."
|
| 30 |
_USER_GUIDE3 = "Generated multiview images are shown below!"
|
| 31 |
|
| 32 |
+
deployed = True
|
| 33 |
|
| 34 |
def mask_prediction(mask_predictor, image_in: Image.Image):
|
| 35 |
if image_in.mode=='RGBA':
|
|
|
|
| 63 |
elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
|
| 64 |
data = {"input_image": image_input, "input_elevation": elevation_input}
|
| 65 |
for k, v in data.items():
|
| 66 |
+
if deployed:
|
| 67 |
+
data[k] = v.unsqueeze(0).cuda()
|
| 68 |
+
else:
|
| 69 |
+
data[k] = v.unsqueeze(0)
|
| 70 |
data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
|
| 71 |
|
| 72 |
+
if deployed:
|
| 73 |
+
x_sample = model.sample(data, cfg_scale, batch_view_num)
|
| 74 |
+
else:
|
| 75 |
+
x_sample = torch.zeros(sample_num, 16, 3, 256, 256)
|
| 76 |
|
| 77 |
B, N, _, H, W = x_sample.shape
|
| 78 |
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
|
|
|
|
| 92 |
ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
|
| 93 |
config = OmegaConf.load(cfg)
|
| 94 |
# model = None
|
| 95 |
+
if deployed:
|
| 96 |
+
model = instantiate_from_config(config.model)
|
| 97 |
+
print(f'loading model from {ckpt} ...')
|
| 98 |
+
ckpt = torch.load(ckpt,map_location='cpu')
|
| 99 |
+
model.load_state_dict(ckpt['state_dict'], strict=True)
|
| 100 |
+
model = model.cuda().eval()
|
| 101 |
+
del ckpt
|
| 102 |
+
else:
|
| 103 |
+
model = None
|
| 104 |
|
| 105 |
# init sam model
|
| 106 |
mask_predictor = None # sam_init(device_idx)
|
|
|
|
| 136 |
examples_per_page=40
|
| 137 |
)
|
| 138 |
|
| 139 |
+
|
| 140 |
with gr.Column(scale=1):
|
| 141 |
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
|
| 142 |
crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
|
| 143 |
crop_btn = gr.Button('Crop the image', variant='primary', interactive=True)
|
| 144 |
+
fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
|
| 145 |
|
| 146 |
with gr.Column(scale=1):
|
| 147 |
input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False)
|
|
|
|
| 151 |
# batch_view_num = gr.Slider(1, 16, 8, step=1, label='', interactive=True)
|
| 152 |
seed = gr.Number(6033, label='Random seed', interactive=True)
|
| 153 |
run_btn = gr.Button('Run Generation', variant='primary', interactive=True)
|
| 154 |
+
fig1 = gr.Image(value=Image.open('assets/elevation.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
|
| 155 |
|
| 156 |
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
|
| 157 |
|