Spaces:
Running
Running
File size: 45,470 Bytes
a388ec1 0d2f29f a388ec1 0d2f29f a388ec1 0d2f29f a388ec1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 |
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "charset-normalizer==3.4.2",
# "great-tables==0.17.0",
# "marimo",
# "pandas==2.3.0",
# ]
# ///
import marimo
__generated_with = "0.14.6"
app = marimo.App(width="full", app_title="LLM Text Preprocessing Checker")
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _(mo):
mo.md(
r"""
# LLM Text Preprocessing Checker
Checks two files and provides the diff output as well as metrics on deleted and inserted characters.
Additionaly, provides a breakdown by Unicode character class of deletions and insertions.
Note that this uses a pure-Python Myers diff algorithm for the comparison and may not be performant for larger diffs.
"""
)
return
@app.cell
def _():
import unicodedata
from typing import List, Dict, Any
from dataclasses import dataclass
from enum import IntEnum
import html as python_html
from great_tables import GT, loc, style
import pandas as pd
class Operation(IntEnum):
DELETE = 0
INSERT = 1
EQUAL = 2
@dataclass(slots=True)
class Edit:
operation: Operation
old_start: int
old_end: int
new_start: int
new_end: int
old_text: str = ""
new_text: str = ""
DEL_STYLE = "background-color:#ffcccc;color:#880000;text-decoration:line-through;"
INS_STYLE = "background-color:#ccffcc;color:#008800;"
EQUAL_STYLE = "color:#666666;"
CONTAINER_STYLE = (
"font-family: ui-monospace, monospace; "
"white-space: pre-wrap; "
"line-height: 1.6; "
"padding: 20px; "
"background-color: #f8f9fa; "
"border-radius: 8px; "
"border: 1px solid #dee2e6;"
)
def classify_char(char: str) -> str:
"""Classify a character using Unicode categories."""
if not char:
return "empty"
category = unicodedata.category(char)
# Map Unicode categories to readable classifications
category_map = {
"Ll": "lowercase",
"Lu": "uppercase",
"Lt": "titlecase",
"Lm": "modifier_letter",
"Lo": "other_letter",
"Nd": "decimal_digit",
"Nl": "letter_number",
"No": "other_number",
"Pc": "connector_punctuation",
"Pd": "dash_punctuation",
"Ps": "open_punctuation",
"Pe": "close_punctuation",
"Pi": "initial_punctuation",
"Pf": "final_punctuation",
"Po": "other_punctuation",
"Sm": "math_symbol",
"Sc": "currency_symbol",
"Sk": "modifier_symbol",
"So": "other_symbol",
"Zs": "space",
"Zl": "line_separator",
"Zp": "paragraph_separator",
"Cc": "control",
"Cf": "format",
"Co": "private_use",
"Cn": "unassigned",
}
# Special handling for CJK
if "\u4e00" <= char <= "\u9fff":
return "cjk_ideograph"
elif "\u3040" <= char <= "\u309f":
return "hiragana"
elif "\u30a0" <= char <= "\u30ff":
return "katakana"
elif "\uac00" <= char <= "\ud7af":
return "hangul"
return category_map.get(category, category)
def _myers_backtrack(trace: List[List[int]], a: str, b: str) -> List[Edit]:
"""Back-tracking helper to materialise the edit script."""
edits: List[Edit] = []
n, m = len(a), len(b)
x, y = n, m
offset = len(trace[0]) // 2
# Walk the layers backwards
for d in range(len(trace) - 1, 0, -1):
v = trace[d]
k = x - y
idx = k + offset
# Determine the predecessor k'
if k == -d or (k != d and v[idx - 1] < v[idx + 1]):
k_prev = k + 1 # came from below (insertion)
else:
k_prev = k - 1 # came from right (deletion)
x_prev = trace[d - 1][k_prev + offset]
y_prev = x_prev - k_prev
# Emit the matching "snake"
while x > x_prev and y > y_prev:
x -= 1
y -= 1
edits.append(Edit(Operation.EQUAL, x, x + 1, y, y + 1, a[x], b[y]))
# Emit the single edit (INSERT or DELETE) that led to the snake
if x_prev == x: # insertion
y -= 1
edits.append(Edit(Operation.INSERT, x, x, y, y + 1, "", b[y]))
else: # deletion
x -= 1
edits.append(Edit(Operation.DELETE, x, x + 1, y, y, a[x], ""))
# Leading snake (d = 0) – everything matched at the start
while x > 0 and y > 0:
x -= 1
y -= 1
edits.append(Edit(Operation.EQUAL, x, x + 1, y, y + 1, a[x], b[y]))
# Any remaining leading insertions / deletions
while x > 0:
x -= 1
edits.append(Edit(Operation.DELETE, x, x + 1, y, y, a[x], ""))
while y > 0:
y -= 1
edits.append(Edit(Operation.INSERT, x, x, y, y + 1, "", b[y]))
edits.reverse()
return edits
def myers_diff(a: str, b: str) -> List[Edit]:
"""
Very fast Myers diff (O((N+M)·D) time, O(N+M) memory).
Returns a list of Edit objects (DELETE / INSERT / EQUAL).
"""
n, m = len(a), len(b)
if n == 0:
return [Edit(Operation.INSERT, 0, 0, 0, m, "", b)] if m else []
if m == 0:
return [Edit(Operation.DELETE, 0, n, 0, 0, a, "")] if n else []
max_d = n + m
offset = max_d # map k ∈ [-max_d .. +max_d] → index
v = [0] * (2 * max_d + 1) # current frontier
trace = [] # keeps a copy of v for every d
# Forward phase – build the "trace" that will be backtracked
for d in range(max_d + 1):
v_next = v[:] # copy *once* per layer
for k in range(-d, d + 1, 2):
idx = k + offset
# Choosing the predecessor (insertion vs deletion)
if k == -d or (k != d and v[idx - 1] < v[idx + 1]):
x = v[idx + 1] # insertion (move down)
else:
x = v[idx - 1] + 1 # deletion (move right)
y = x - k
# Greedy snake – march diagonally while chars match
while x < n and y < m and a[x] == b[y]:
x += 1
y += 1
v_next[idx] = x
# Reached the end – stop early
if x >= n and y >= m:
trace.append(v_next)
return _myers_backtrack(trace, a, b)
trace.append(v_next)
v = v_next # reuse buffer
# Should never get here
raise RuntimeError("diff failed")
def classify_text(text: str) -> Dict[str, int]:
"""Count characters by classification."""
if not text:
return {}
classifications = {}
for char in text:
char_class = classify_char(char)
classifications[char_class] = classifications.get(char_class, 0) + 1
return classifications
def classify_edits(edits: List[Edit]) -> Dict[Operation, Dict[str, int]]:
"""
Classify edit operations by character class.
Returns a nested dictionary: {operation: {char_class: count}}
"""
# Filter out EQUAL operations to save memory
change_edits = [e for e in edits if e.operation != Operation.EQUAL]
# Group all edits by operation type (not consecutive grouping)
edits_by_op = {}
for edit in change_edits:
if edit.operation not in edits_by_op:
edits_by_op[edit.operation] = []
edits_by_op[edit.operation].append(edit)
result = {}
for op, edit_list in edits_by_op.items():
combined_text = ""
if op == Operation.DELETE:
combined_text = "".join(e.old_text for e in edit_list)
elif op == Operation.INSERT:
combined_text = "".join(e.new_text for e in edit_list)
result[op] = classify_text(combined_text)
return result
def calculate_change_metrics(
original: str,
edits: List[Edit],
classifications: Dict[Operation, Dict[str, int]],
) -> Dict[str, Any]:
"""Calculate detailed change metrics including percentages."""
metrics = {
"total_original_chars": len(original),
"total_deleted_chars": 0,
"total_inserted_chars": 0,
"deletion_percentage": 0.0,
"insertion_percentage": 0.0,
"net_change_percentage": 0.0,
"char_class_metrics": {},
}
# Calculate total changes
for edit in edits:
if edit.operation == Operation.DELETE:
metrics["total_deleted_chars"] += len(edit.old_text)
elif edit.operation == Operation.INSERT:
metrics["total_inserted_chars"] += len(edit.new_text)
# Calculate percentages
if metrics["total_original_chars"] > 0:
metrics["deletion_percentage"] = (
metrics["total_deleted_chars"] / metrics["total_original_chars"]
) * 100
metrics["insertion_percentage"] = (
metrics["total_inserted_chars"] / metrics["total_original_chars"]
) * 100
net_change = (
metrics["total_inserted_chars"] - metrics["total_deleted_chars"]
)
metrics["net_change_percentage"] = (
net_change / metrics["total_original_chars"]
) * 100
# Get character classification of original text
original_classifications = classify_text(original)
# Calculate per-character-class metrics
all_char_classes = set()
for op_classes in classifications.values():
all_char_classes.update(op_classes.keys())
all_char_classes.update(original_classifications.keys())
for char_class in all_char_classes:
original_count = original_classifications.get(char_class, 0)
deleted_count = classifications.get(Operation.DELETE, {}).get(char_class, 0)
inserted_count = classifications.get(Operation.INSERT, {}).get(
char_class, 0
)
class_metrics = {
"original_count": original_count,
"deleted_count": deleted_count,
"inserted_count": inserted_count,
"deletion_percentage": 0.0,
"insertion_percentage": 0.0,
}
if original_count > 0:
class_metrics["deletion_percentage"] = (
deleted_count / original_count
) * 100
# Insertion percentage relative to original count of this class
if original_count > 0:
class_metrics["insertion_percentage"] = (
inserted_count / original_count
) * 100
elif inserted_count > 0:
# If there were none originally, show as new
class_metrics["insertion_percentage"] = float("inf")
metrics["char_class_metrics"][char_class] = class_metrics
return metrics
def escape_html(text: str) -> str:
"""Escape HTML and make whitespace visible."""
# First escape HTML
text = python_html.escape(text)
# Make whitespace visible
ws_trans = str.maketrans({" ": "·", "\t": "→ ", "\n": "¶\n"})
return text.translate(ws_trans)
def generate_html_diff(
edits: List[Edit], show_equal: bool = True, max_equal_length: int = 100
) -> str:
"""Generate HTML visualization of the diff with performance optimizations."""
# Pre-allocate list for better performance
html_parts = []
# Group consecutive edits of the same type to reduce HTML tags
grouped_edits = []
current_group = []
current_op = None
for edit in edits:
if (
edit.operation == current_op and len(current_group) < 100
): # Batch up to 100
current_group.append(edit)
else:
if current_group:
grouped_edits.append((current_op, current_group))
current_group = [edit]
current_op = edit.operation
if current_group:
grouped_edits.append((current_op, current_group))
# Process grouped edits
for op, group in grouped_edits:
if op == Operation.DELETE:
combined_text = "".join(e.old_text for e in group)
escaped = escape_html(combined_text)
html_parts.append(
f'<span style="{DEL_STYLE}" title="Deleted">{escaped}</span>'
)
elif op == Operation.INSERT:
combined_text = "".join(e.new_text for e in group)
escaped = escape_html(combined_text)
html_parts.append(
f'<span style="{INS_STYLE}" title="Added">{escaped}</span>'
)
elif op == Operation.EQUAL and show_equal:
combined_text = "".join(e.old_text for e in group)
# Truncate very long equal sections
if len(combined_text) > max_equal_length:
start = escape_html(combined_text[: max_equal_length // 2])
end = escape_html(combined_text[-max_equal_length // 2 :])
omitted = len(combined_text) - max_equal_length
html_parts.append(
f'<span style="{EQUAL_STYLE}">{start}'
f"<em>...{omitted} chars omitted...</em>"
f"{end}</span>"
)
else:
escaped = escape_html(combined_text)
html_parts.append(f'<span style="{EQUAL_STYLE}">{escaped}</span>')
return f'<div style="{CONTAINER_STYLE}">{"".join(html_parts)}</div>'
def generate_side_by_side_html(edits: List[Edit]) -> str:
"""Generate side-by-side HTML diff view."""
old_parts = []
new_parts = []
for edit in edits:
if edit.operation == Operation.DELETE:
escaped = escape_html(edit.old_text)
old_parts.append(f'<span style="{DEL_STYLE}">{escaped}</span>')
elif edit.operation == Operation.INSERT:
escaped = escape_html(edit.new_text)
new_parts.append(f'<span style="{INS_STYLE}">{escaped}</span>')
elif edit.operation == Operation.EQUAL:
escaped = escape_html(edit.old_text)
old_parts.append(f"<span>{escaped}</span>")
new_parts.append(f"<span>{escaped}</span>")
return f'''
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
<div>
<h4 style="margin: 0 0 10px 0;">Original</h4>
<div style="{CONTAINER_STYLE}">{"".join(old_parts)}</div>
</div>
<div>
<h4 style="margin: 0 0 10px 0;">Processed</h4>
<div style="{CONTAINER_STYLE}">{"".join(new_parts)}</div>
</div>
</div>
'''
def generate_html_diff_fast(edits: List[Edit], context_chars: int = 5) -> str:
"""
Ultra-fast HTML diff generation showing only changes with context.
"""
html_parts = []
# Filter to only show changes and surrounding context
change_indices = [
i for i, e in enumerate(edits) if e.operation != Operation.EQUAL
]
if not change_indices:
return '<div style="{CONTAINER_STYLE}">No changes found.</div>'
# Build ranges to show (change + context)
ranges_to_show = []
start = max(0, change_indices[0] - context_chars)
end = min(len(edits), change_indices[0] + context_chars + 1)
for idx in change_indices[1:]:
if idx - end <= context_chars * 2:
# Extend current range
end = min(len(edits), idx + context_chars + 1)
else:
# Save current range and start new one
ranges_to_show.append((start, end))
start = max(0, idx - context_chars)
end = min(len(edits), idx + context_chars + 1)
ranges_to_show.append((start, end))
# Generate HTML for ranges
for i, (start, end) in enumerate(ranges_to_show):
if i > 0:
html_parts.append(
'<div style="color:#999;text-align:center;margin:10px 0;">...</div>'
)
for j in range(start, end):
edit = edits[j]
if edit.operation == Operation.DELETE:
escaped = escape_html(edit.old_text)
html_parts.append(f'<span style="{DEL_STYLE}">{escaped}</span>')
elif edit.operation == Operation.INSERT:
escaped = escape_html(edit.new_text)
html_parts.append(f'<span style="{INS_STYLE}">{escaped}</span>')
else: # EQUAL
escaped = escape_html(edit.old_text)
html_parts.append(f'<span style="{EQUAL_STYLE}">{escaped}</span>')
return f'<div style="{CONTAINER_STYLE}">{"".join(html_parts)}</div>'
def generate_side_by_side_html_fast(
edits: List[Edit], context_chars: int = 5
) -> str:
"""
Fast side-by-side HTML diff generation showing only changes with context.
"""
# Filter to only show changes and surrounding context
change_indices = [
i for i, e in enumerate(edits) if e.operation != Operation.EQUAL
]
if not change_indices:
return """
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
<div>
<h4 style="margin: 0 0 10px 0;">Original</h4>
<div style="{CONTAINER_STYLE}">No changes found.</div>
</div>
<div>
<h4 style="margin: 0 0 10px 0;">Processed</h4>
<div style="{CONTAINER_STYLE}">No changes found.</div>
</div>
</div>
"""
# Build ranges to show (change + context)
ranges_to_show = []
start = max(0, change_indices[0] - context_chars)
end = min(len(edits), change_indices[0] + context_chars + 1)
for idx in change_indices[1:]:
if idx - end <= context_chars * 2:
# Extend current range
end = min(len(edits), idx + context_chars + 1)
else:
# Save current range and start new one
ranges_to_show.append((start, end))
start = max(0, idx - context_chars)
end = min(len(edits), idx + context_chars + 1)
ranges_to_show.append((start, end))
# Generate HTML for ranges
old_parts = []
new_parts = []
for i, (start, end) in enumerate(ranges_to_show):
if i > 0:
separator = (
'<div style="color:#999;text-align:center;margin:10px 0;">...</div>'
)
old_parts.append(separator)
new_parts.append(separator)
for j in range(start, end):
edit = edits[j]
if edit.operation == Operation.DELETE:
escaped = escape_html(edit.old_text)
old_parts.append(f'<span style="{DEL_STYLE}">{escaped}</span>')
elif edit.operation == Operation.INSERT:
escaped = escape_html(edit.new_text)
new_parts.append(f'<span style="{INS_STYLE}">{escaped}</span>')
else: # EQUAL
escaped = escape_html(edit.old_text)
old_parts.append(f'<span style="{EQUAL_STYLE}">{escaped}</span>')
new_parts.append(f'<span style="{EQUAL_STYLE}">{escaped}</span>')
return f'''
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
<div>
<h4 style="margin: 0 0 10px 0;">Original</h4>
<div style="{CONTAINER_STYLE}">{"".join(old_parts)}</div>
</div>
<div>
<h4 style="margin: 0 0 10px 0;">Processed</h4>
<div style="{CONTAINER_STYLE}">{"".join(new_parts)}</div>
</div>
</div>
'''
def operation_to_past(op: Operation) -> str:
if op == Operation.INSERT:
return "inserted"
else:
return str(op) + "d"
def format_diff_summary(
edits: List[Edit],
classifications: Dict[Operation, Dict[str, int]],
metrics: Dict[str, Any],
) -> str:
"""Create a human-readable summary of the diff."""
lines = ["## Diff Summary\n"]
# Overall statistics
lines.append("### Overall Statistics")
lines.append(
f"- **Original text**: {metrics['total_original_chars']:,} characters"
)
# Format deletions
del_pct = format_percentage(metrics["deletion_percentage"])
lines.append(
f"- **Deletions**: {metrics['total_deleted_chars']:,} characters ({del_pct})"
)
# Format insertions
ins_pct = format_percentage(metrics["insertion_percentage"])
lines.append(
f"- **Insertions**: {metrics['total_inserted_chars']:,} characters ({ins_pct})"
)
# Format net change
net_pct = metrics["net_change_percentage"]
if abs(net_pct) < 0.01:
net_pct_str = f"{net_pct:+.3f}%"
else:
net_pct_str = f"{net_pct:+.1f}%"
lines.append(
f"- **Net change**: {net_pct_str} "
f"({'increase' if metrics['net_change_percentage'] > 0 else 'decrease' if metrics['net_change_percentage'] < 0 else 'no change'})"
)
# Character classifications
if classifications:
lines.append("\n### Character Classifications")
# Show changes by character class
for op in [Operation.DELETE, Operation.INSERT]:
if op in classifications and classifications[op]:
lines.append(f"\n**{operation_to_past(op).title()} Characters:**")
for char_class, count in sorted(
classifications[op].items(), key=lambda x: -x[1]
):
lines.append(
f"- {char_class.replace('_', ' ').title()}: {count}"
)
# Show percentage changes by character class
lines.append("\n### Change Percentages by Character Class")
# Sort by most changed (highest deletion or insertion percentage)
sorted_classes = sorted(
metrics["char_class_metrics"].items(),
key=lambda x: max(
x[1]["deletion_percentage"],
0
if x[1]["insertion_percentage"] == float("inf")
else x[1]["insertion_percentage"],
),
reverse=True,
)
for char_class, class_metrics in sorted_classes:
if (
class_metrics["deleted_count"] > 0
or class_metrics["inserted_count"] > 0
):
class_name = char_class.replace("_", " ").title()
# Format the line
line_parts = [f"- **{class_name}**:"]
if class_metrics["original_count"] > 0:
line_parts.append(
f"Original: {class_metrics['original_count']}"
)
if class_metrics["deleted_count"] > 0:
line_parts.append(
f"Deleted: {class_metrics['deleted_count']} "
f"({class_metrics['deletion_percentage']:.1f}%)"
)
if class_metrics["inserted_count"] > 0:
if class_metrics["insertion_percentage"] == float("inf"):
line_parts.append(
f"Inserted: {class_metrics['inserted_count']} (new)"
)
else:
line_parts.append(
f"Inserted: {class_metrics['inserted_count']} "
f"({class_metrics['insertion_percentage']:.1f}%)"
)
lines.append(" | ".join(line_parts))
return "\n".join(lines)
def format_percentage(value: float, min_decimals: int = 1) -> str:
"""Format percentage with adaptive decimal places."""
if value == 0:
return "0%"
elif value < 0.01:
return f"{value:.3f}%" # Show 3 decimals for very small values
elif value < 0.1:
return f"{value:.2f}%" # Show 2 decimals for small values
elif value < 1:
return f"{value:.1f}%" # Show 1 decimal for values < 1%
else:
return f"{value:.0f}%" # No decimals for values >= 1%
def classify_edits_with_chars(
edits: List[Edit],
) -> Dict[Operation, Dict[str, Dict[str, int]]]:
"""
Classify edit operations by character class and track character frequencies.
Returns: {operation: {char_class: {char: count}}}
"""
from collections import defaultdict, Counter
# Filter out EQUAL operations
change_edits = [e for e in edits if e.operation != Operation.EQUAL]
# Track characters by operation and classification
result = defaultdict(lambda: defaultdict(Counter))
for edit in change_edits:
text = (
edit.old_text if edit.operation == Operation.DELETE else edit.new_text
)
for char in text:
char_class = classify_char(char)
result[edit.operation][char_class][char] += 1
return dict(result)
def get_top_chars(char_counter: Dict[str, int], n: int = 5) -> str:
"""Get top n characters by frequency, formatted for display."""
if not char_counter:
return "-"
# Sort by frequency and take top n
top_chars = sorted(char_counter.items(), key=lambda x: -x[1])[:n]
# Format characters for display
formatted_chars = []
for char, _ in top_chars:
if char == " ":
formatted_chars.append("·") # Middle dot for space
elif char == "\n":
formatted_chars.append("¶") # Pilcrow for newline
elif char == "\t":
formatted_chars.append("→") # Arrow for tab
elif ord(char) < 32 or ord(char) == 127:
formatted_chars.append(f"\\x{ord(char):02x}") # Hex for control chars
else:
formatted_chars.append(char)
return " ".join(formatted_chars)
def create_summary_tables(
edits: List[Edit],
classifications: Dict[Operation, Dict[str, int]],
metrics: Dict[str, Any],
) -> Dict[str, GT]:
"""Create great_tables tables for the diff summary."""
# Get detailed character data
detailed_classifications = classify_edits_with_chars(edits)
# Table 1: Overall Statistics (unchanged)
overall_data = pd.DataFrame(
{
"Metric": [
"Original Length",
"Characters Deleted",
"Characters Inserted",
"Net Change",
],
"Count": [
metrics["total_original_chars"],
metrics["total_deleted_chars"],
metrics["total_inserted_chars"],
metrics["total_inserted_chars"] - metrics["total_deleted_chars"],
],
"Percentage": [
"-",
format_percentage(metrics["deletion_percentage"]),
format_percentage(metrics["insertion_percentage"]),
f"{metrics['net_change_percentage']:+.3f}%"
if abs(metrics["net_change_percentage"]) < 0.01
else f"{metrics['net_change_percentage']:+.1f}%",
],
}
)
overall_table = (
GT(overall_data)
.tab_header(
title="Text Change Summary",
subtitle=f"Total edits: {len([e for e in edits if e.operation != Operation.EQUAL])}",
)
.fmt_number(columns="Count", decimals=0, use_seps=True)
.tab_style(
style=[style.fill(color="#f0f0f0"), style.text(weight="bold")],
locations=loc.body(rows=[3]),
)
.cols_align(align="center", columns=["Count", "Percentage"])
.opt_stylize(style=1, color="blue")
)
# Table 2: Character Class Changes with top characters
char_class_data = []
# Get all character classes
all_classes = set()
for op_classes in classifications.values():
all_classes.update(op_classes.keys())
all_classes.update(metrics["char_class_metrics"].keys())
# Build rows
for char_class in sorted(all_classes):
class_metrics = metrics["char_class_metrics"].get(char_class, {})
# Get top characters for this class
del_chars = detailed_classifications.get(Operation.DELETE, {}).get(
char_class, {}
)
ins_chars = detailed_classifications.get(Operation.INSERT, {}).get(
char_class, {}
)
row = {
"Character Class": char_class.replace("_", " ").title(),
"Original": class_metrics.get("original_count", 0),
"Deleted": class_metrics.get("deleted_count", 0),
"Top Deleted": get_top_chars(del_chars, 5),
"Inserted": class_metrics.get("inserted_count", 0),
"Top Inserted": get_top_chars(ins_chars, 5),
"Del %": format_percentage(class_metrics.get("deletion_percentage", 0))
if class_metrics.get("deletion_percentage", 0) > 0
else "-",
"Ins %": (
"new"
if class_metrics.get("insertion_percentage", 0) == float("inf")
else format_percentage(class_metrics.get("insertion_percentage", 0))
if class_metrics.get("insertion_percentage", 0) > 0
else "-"
),
}
# Only include rows with changes
if row["Deleted"] > 0 or row["Inserted"] > 0:
char_class_data.append(row)
if char_class_data:
char_class_df = pd.DataFrame(char_class_data)
char_class_table = (
GT(char_class_df)
.tab_header(title="Changes by Character Classification")
.fmt_number(
columns=["Original", "Deleted", "Inserted"],
decimals=0,
use_seps=True,
)
.tab_style(
style=style.fill(color="#ffcccc"),
locations=loc.body(columns=["Deleted", "Top Deleted"]),
)
.tab_style(
style=style.fill(color="#ccffcc"),
locations=loc.body(columns=["Inserted", "Top Inserted"]),
)
.tab_style(
style=style.text(font="monospace"),
locations=loc.body(columns=["Top Deleted", "Top Inserted"]),
)
.cols_align(
align="center",
columns=["Original", "Deleted", "Inserted", "Del %", "Ins %"],
)
.cols_align(align="left", columns=["Top Deleted", "Top Inserted"])
.tab_spanner(
label="Counts", columns=["Original", "Deleted", "Inserted"]
)
.tab_spanner(
label="Characters", columns=["Top Deleted", "Top Inserted"]
)
.tab_spanner(label="Percentages", columns=["Del %", "Ins %"])
.cols_width(
{
"Character Class": "20%",
"Original": "10%",
"Deleted": "10%",
"Top Deleted": "15%",
"Inserted": "10%",
"Top Inserted": "15%",
"Del %": "10%",
"Ins %": "10%",
}
)
.opt_stylize(style=1, color="blue")
)
else:
char_class_table = None
# Table 3: Compact Combined View (unchanged except for percentage formatting)
compact_data = []
# Add summary row
compact_data.append(
{
"Type": "Total",
"Deleted": metrics["total_deleted_chars"],
"Inserted": metrics["total_inserted_chars"],
"Net": metrics["total_inserted_chars"] - metrics["total_deleted_chars"],
"Change": f"{metrics['net_change_percentage']:+.3f}%"
if abs(metrics["net_change_percentage"]) < 0.01
else f"{metrics['net_change_percentage']:+.0f}%",
}
)
# Add top character classes (sorted by total change)
class_changes = []
for char_class, class_metrics in metrics["char_class_metrics"].items():
if (
class_metrics["deleted_count"] > 0
or class_metrics["inserted_count"] > 0
):
class_changes.append(
{
"Type": char_class.replace("_", " ").title(),
"Deleted": class_metrics["deleted_count"],
"Inserted": class_metrics["inserted_count"],
"Net": class_metrics["inserted_count"]
- class_metrics["deleted_count"],
"Change": class_metrics["deleted_count"]
+ class_metrics["inserted_count"],
}
)
# Sort by total change and take top 5
class_changes.sort(key=lambda x: x["Change"], reverse=True)
for item in class_changes[:5]:
item["Change"] = f"{item['Net']:+d}" if item["Net"] != 0 else "±0"
compact_data.append(item)
compact_df = pd.DataFrame(compact_data)
compact_table = (
GT(compact_df)
.tab_header(title="Edit Summary - Compact View")
.fmt_number(
columns=["Deleted", "Inserted", "Net"], decimals=0, use_seps=True
)
.tab_style(
style=[
style.fill(color="#e8e8e8"),
style.text(weight="bold"),
style.borders(sides=["top", "bottom"], color="#666", weight="2px"),
],
locations=loc.body(rows=[0]),
)
.tab_style(
style=style.text(color="#880000"),
locations=loc.body(columns=["Deleted"]),
)
.tab_style(
style=style.text(color="#008800"),
locations=loc.body(columns=["Inserted"]),
)
.cols_align(
align="center", columns=["Deleted", "Inserted", "Net", "Change"]
)
.cols_width(
{
"Type": "40%",
"Deleted": "15%",
"Inserted": "15%",
"Net": "15%",
"Change": "15%",
}
)
.opt_stylize(style=1, color="cyan")
)
return {
"overall": overall_table,
"char_class": char_class_table,
"compact": compact_table,
}
def create_operation_matrix_table(
edits: List[Edit], classifications: Dict[Operation, Dict[str, int]]
) -> GT:
"""Create a matrix view of operations by character class."""
# Get all character classes
all_classes = set()
for op_classes in classifications.values():
all_classes.update(op_classes.keys())
# Build matrix data
matrix_data = []
for char_class in sorted(all_classes):
row = {
"Character Type": char_class.replace("_", " ").title(),
"Deletions": classifications.get(Operation.DELETE, {}).get(
char_class, 0
),
"Insertions": classifications.get(Operation.INSERT, {}).get(
char_class, 0
),
"Balance": (
classifications.get(Operation.INSERT, {}).get(char_class, 0)
- classifications.get(Operation.DELETE, {}).get(char_class, 0)
),
}
matrix_data.append(row)
# Sort by total changes
matrix_data.sort(key=lambda x: x["Deletions"] + x["Insertions"], reverse=True)
# Convert to DataFrame
matrix_df = pd.DataFrame(matrix_data)
# Calculate max values for domains
max_del = max((r["Deletions"] for r in matrix_data), default=1)
max_ins = max((r["Insertions"] for r in matrix_data), default=1)
max_balance = max((abs(r["Balance"]) for r in matrix_data), default=1)
matrix_table = (
GT(matrix_df)
.tab_header(title="Operation Matrix by Character Type")
.fmt_number(columns=["Deletions", "Insertions", "Balance"], decimals=0)
.data_color(
columns=["Deletions"],
palette=["white", "#ffcccc"],
domain=[0, max_del],
)
.data_color(
columns=["Insertions"],
palette=["white", "#ccffcc"],
domain=[0, max_ins],
)
.data_color(
columns=["Balance"],
palette=["#ffcccc", "white", "#ccffcc"],
domain=[-max_balance, max_balance],
)
.cols_align(align="center", columns=["Deletions", "Insertions", "Balance"])
.opt_stylize(style=2, color="gray")
)
return matrix_table
def is_long_diff(edits: List[Edit], original: str) -> bool:
"""Determine if a diff should use fast rendering."""
return len(edits) > 1000 or len(original) > 10000
def analyze_text_changes(
original: str,
processed: str,
) -> Dict[str, Any]:
"""
Main function to analyze changes between two texts.
"""
edits = myers_diff(original, processed)
classifications = classify_edits(edits)
metrics = calculate_change_metrics(original, edits, classifications)
summary = format_diff_summary(edits, classifications, metrics)
result = {
"edits": edits,
"classifications": classifications,
"metrics": metrics,
"summary": summary,
"tables": create_summary_tables(edits, classifications, metrics),
"matrix_table": create_operation_matrix_table(edits, classifications),
}
return result
def render_html_diff(
edits: List[Edit],
original: str,
context_chars: int = 5,
side_by_side: bool = False,
use_fast_html: bool | None = None,
) -> str:
"""
Unified function to render HTML diffs with automatic optimization.
Args:
edits: List of Edit operations
original: Original text (for length checking)
context_chars: Number of context lines to show in fast mode
side_by_side: Whether to use side-by-side view
use_fast_html: Force fast mode (None for auto-detect)
Returns:
HTML string of the diff
"""
if use_fast_html is None:
use_fast_html = is_long_diff(edits, original)
if use_fast_html:
if side_by_side:
return generate_side_by_side_html_fast(
edits, context_chars=context_chars
)
else:
return generate_html_diff_fast(edits, context_chars=context_chars)
else:
if side_by_side:
# For non-fast mode, still use length-based optimization
if len(edits) > 500:
return generate_side_by_side_html_fast(edits, max_length=50000)
else:
return generate_side_by_side_html(edits)
else:
return generate_html_diff(edits, show_equal=True, max_equal_length=200)
return analyze_text_changes, render_html_diff
@app.cell
def _(mo):
o_file_upload = mo.ui.file(label="Original text", kind="area")
p_file_upload = mo.ui.file(label="Preprocessed text", kind="area")
file_stack = mo.hstack([o_file_upload, p_file_upload], widths="equal")
return file_stack, o_file_upload, p_file_upload
@app.cell
def _(mo):
o_textbox = mo.ui.text_area(label="Original text", full_width=True)
p_textbox = mo.ui.text_area(label="Preprocessed text", full_width=True)
text_stack = mo.hstack([o_textbox, p_textbox], widths="equal")
return o_textbox, p_textbox, text_stack
@app.cell
def _(file_stack, mo, text_stack):
mo.ui.tabs({"Text": text_stack, "File": file_stack})
return
@app.function
def check_text_similarity(text1: str, text2: str, threshold: float = 0.1) -> bool:
"""Check if texts are similar enough based on length and character overlap."""
if not text1 or not text2:
return False
return len(set(text1) & set(text2)) / len(
set(text1) | set(text2)
) >= threshold and abs(len(text1) - len(text2)) / max(len(text1), len(text2)) <= (
1 - threshold
)
@app.cell
def _(mo, o_file_upload, o_textbox, p_file_upload, p_textbox):
from charset_normalizer import detect
def detect_encoding(b: bytes) -> str:
result = detect(b)
return result["encoding"]
o_text, p_text = (
"Example text will be used if none provided!",
"Example Text will be used, if none provided.",
)
try:
if o_file_upload.contents():
encoding = detect_encoding(o_file_upload.contents())
try:
o_text = o_file_upload.contents().decode(encoding)
except UnicodeDecodeError:
o_text = o_file_upload.contents().decode("utf-8")
elif o_textbox.value:
o_text = o_textbox.value
if p_file_upload.contents():
encoding = detect_encoding(o_file_upload.contents())
try:
p_text = p_file_upload.contents().decode(encoding)
except UnicodeDecodeError:
p_text = p_file_upload.contents().decode("utf-8")
elif p_textbox.value:
p_text = p_textbox.value
except UnicodeDecodeError:
mo.stop(
True,
mo.md("Error decoding files. Please try UTF-8.").callout(kind="danger"),
)
mo.stop(
not check_text_similarity(o_text, p_text),
mo.md(
f"Texts are too dissimilar! Aborting comparison.\n\n{o_text[:50]}\n\n{p_text[:50]}"
).callout(kind="danger"),
)
return o_text, p_text
@app.cell
def _(analyze_text_changes, o_text, p_text):
results = analyze_text_changes(o_text, p_text)
return (results,)
@app.cell
def _(mo, results):
results_tables = mo.vstack(
[
results["tables"]["overall"],
results["tables"]["char_class"],
results["tables"]["compact"],
]
)
return (results_tables,)
@app.cell
def _(mo, o_text, render_html_diff, results, results_tables):
diff_view = mo.ui.tabs(
{
"Combined diff": mo.Html(
render_html_diff(
results["edits"],
o_text,
)
),
"Side-by-side diff": mo.Html(
render_html_diff(
results["edits"],
o_text,
side_by_side=True,
)
),
}
)
mo.md(f"""
# Results
{results_tables}
{diff_view}
""")
return
@app.cell
def _():
return
if __name__ == "__main__":
app.run()
|