File size: 41,579 Bytes
c691df0
 
 
 
 
 
 
 
 
 
d479194
17327cb
c691df0
 
 
 
c8648fb
c691df0
 
 
 
 
 
 
b38b340
 
c691df0
 
c19b593
17327cb
c691df0
 
 
 
 
 
 
 
 
 
 
17327cb
c691df0
 
 
d479194
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17327cb
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17327cb
 
 
 
 
 
 
 
 
 
 
 
209daf0
17327cb
 
d7f58cf
c19b593
 
 
 
 
d7f58cf
17327cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c691df0
 
17327cb
c691df0
17327cb
 
 
 
 
 
 
 
 
 
 
 
 
c8648fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17327cb
c691df0
 
 
 
 
 
d479194
 
 
c8648fb
c691df0
 
 
 
 
 
 
c8648fb
 
 
c691df0
 
c8648fb
 
 
 
 
 
c691df0
 
 
 
 
 
d479194
c691df0
 
 
 
 
 
 
 
6b8ea95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17327cb
 
 
c691df0
17327cb
 
c691df0
 
17327cb
 
c691df0
17327cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c691df0
17327cb
c8648fb
17327cb
 
 
d7f58cf
17327cb
 
d7f58cf
 
17327cb
c691df0
17327cb
 
 
c691df0
 
 
 
6b8ea95
c691df0
17327cb
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ceef6
c691df0
 
 
 
 
 
 
17327cb
a9ceef6
c691df0
a9ceef6
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17327cb
 
 
c691df0
 
 
 
 
 
 
 
 
17327cb
 
 
c691df0
66b97d8
 
 
 
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b97d8
c691df0
 
 
 
 
 
 
 
 
66b97d8
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b97d8
c691df0
 
 
 
 
 
 
17327cb
c691df0
66b97d8
c691df0
66b97d8
 
c691df0
 
 
 
17327cb
d7f58cf
 
17327cb
 
 
 
 
 
 
 
 
c691df0
 
17327cb
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209daf0
17327cb
 
 
 
 
 
 
 
 
 
c691df0
209daf0
17327cb
 
 
 
 
 
c691df0
17327cb
 
 
 
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
66b97d8
 
17327cb
 
 
66b97d8
 
 
 
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17327cb
 
 
c691df0
17327cb
 
 
 
 
 
 
 
 
 
 
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8648fb
c691df0
 
 
 
 
 
 
 
 
 
 
 
 
d479194
 
 
c691df0
 
 
 
 
 
dd4089f
17327cb
 
 
 
 
 
4becfa2
17327cb
 
 
 
 
 
 
 
4becfa2
17327cb
 
 
 
 
 
 
 
4becfa2
17327cb
 
dd4089f
17327cb
 
 
 
 
 
 
 
 
 
dd4089f
 
 
4becfa2
 
 
 
 
 
 
 
 
c8648fb
6b8ea95
c8648fb
 
 
 
 
 
6b8ea95
 
 
 
 
 
 
 
 
 
c8648fb
6b8ea95
c8648fb
 
 
6b8ea95
 
 
 
 
 
 
 
c8648fb
6b8ea95
c8648fb
 
 
6b8ea95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8648fb
6b8ea95
 
c8648fb
 
 
dd4089f
 
 
 
 
 
 
4becfa2
6b8ea95
dd4089f
 
 
4becfa2
 
c691df0
17327cb
 
 
 
 
 
6b8ea95
c691df0
 
 
 
 
 
dd4089f
c691df0
dd4089f
 
 
 
 
 
 
 
 
 
 
 
c8648fb
dd4089f
 
 
 
 
17327cb
 
 
 
 
dd4089f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17327cb
dd4089f
c8648fb
 
 
 
 
 
 
 
 
 
 
 
 
c691df0
 
 
 
 
 
 
17327cb
c691df0
 
 
 
 
 
d479194
 
 
 
 
 
 
 
 
 
 
 
17327cb
d479194
 
c691df0
 
 
 
 
 
17327cb
 
 
 
 
 
 
 
6b8ea95
 
 
 
 
d479194
c691df0
 
 
 
 
d479194
c691df0
 
17327cb
 
 
 
 
 
 
c8648fb
17327cb
 
 
 
 
 
 
6b8ea95
 
 
 
 
17327cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8648fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17327cb
 
 
 
 
 
 
 
 
c8648fb
 
 
17327cb
 
 
 
 
 
 
 
 
 
 
 
 
c8648fb
 
17327cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c691df0
d479194
 
 
 
 
 
 
 
 
 
c691df0
d479194
 
 
 
c691df0
d479194
 
 
dd4089f
 
c691df0
 
d479194
 
 
17327cb
 
 
 
 
 
 
 
 
d479194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c691df0
c8648fb
 
 
 
 
c691df0
d479194
17327cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8648fb
 
 
 
 
17327cb
 
c691df0
 
 
 
d479194
b38b340
 
 
6b8ea95
d479194
 
 
 
 
6b8ea95
 
d479194
 
 
 
 
 
 
 
1df67da
c691df0
 
 
6b8ea95
 
b38b340
 
 
6b8ea95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b38b340
 
 
 
 
 
6b8ea95
 
 
 
 
 
17327cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c691df0
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
# /// script
# requires-python = ">=3.12"
# dependencies = [
#     "altair==5.5.0",
#     "en-core-web-sm",
#     "marimo",
#     "matplotlib==3.10.3",
#     "numpy==2.2.6",
#     "pandas==2.3.0",
#     "pca==2.10.0",
#     "plotly==6.2.0",
#     "prince==0.16.0",
#     "pyarrow",
#     "scattertext==0.2.2",
#     "scikit-learn==1.7.0",
#     "scipy==1.13.1",
#     "seaborn==0.13.2",
#     "spacy==3.8.7",
#     "umap",
# ]
# [tool.uv.sources]
# en-core-web-sm = { url = "https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.8.0/en_core_web_sm-3.8.0-py3-none-any.whl" }
# ///

# Note that the above dependencies should be kept in sync with pyproject.toml

import marimo

__generated_with = "0.14.10"
app = marimo.App(width="full", app_title="Scattertext on English novels")

with app.setup:
    import marimo as mo
    import spacy
    import pandas as pd
    import scipy
    import numpy as np
    import random
    import re
    import scattertext as st
    from pca import pca
    import prince
    import matplotlib.pyplot as plt
    from pathlib import Path
    from types import SimpleNamespace
    from sklearn.feature_extraction.text import TfidfVectorizer

    RANDOM_SEED = 42
    random.seed(RANDOM_SEED)
    np.random.seed(RANDOM_SEED)


@app.cell
def function_export():
    @mo.cache
    def load_nlp() -> spacy.language.Language:
        """Load spaCy English pipeline (tokenizer only)."""
        return spacy.load("en_core_web_sm", disable=["ner"])

    @mo.cache
    def nlp_docs(texts: list[str], nlp=load_nlp()) -> list[spacy.tokens.Doc]:
        """Return spaCy Doc objects for downstream tasks."""
        return list(nlp.pipe(texts))

    @mo.cache
    def parse_texts(texts: list[str], nlp=load_nlp()) -> list[str]:
        """Tokenize English text via spaCy and emit a whitespace-joined string."""
        return [" ".join(tok.text for tok in doc) for doc in nlp.pipe(texts)]

    @mo.cache
    def build_corpus_cached(
        texts: list[str],
        categories: list[str],
    ) -> st.Corpus:
        """Build or reuse cached Scattertext corpus."""

        df = pd.DataFrame({"text": texts, "category": categories})
        return (
            st.CorpusFromPandas(
                df,
                category_col="category",
                text_col="text",
                nlp=load_nlp(),
            )
            .build()
            .get_unigram_corpus()
            .compact(st.AssociationCompactor(2000))
        )

    def _strip_advanced(fn: str) -> str:
        """
        Strip trailing '_advanced' from a filename stem.
        """
        from pathlib import Path

        stem = Path(fn).stem
        return stem.replace("_advanced", "")

    def make_short_label(fn: str) -> str:
        """
        Generate an initials-based short label from filename.
        E.g., 'e_r_eddison-the_worm_ouroboros.txt' -> 'ERE-TWO'.
        """
        stem = _strip_advanced(fn)
        fields = stem.split("-", 1)
        if len(fields) == 2:
            author, title = fields
        else:
            author = fields[0]
            title = fields[0]
        initials = lambda s: "".join(part[0].upper() for part in s.split("_"))
        return f"{initials(author)}-{initials(title)}"

    def format_chunk_label(
        fn: str,
        category: str,
        speech_type: str,
        chunk_idx: int | str,
    ) -> str:
        """
        Create a chunk label 'SHORTLABEL(CATEGORY[-speech_type])#INDEX'.
        """
        sl = make_short_label(fn)
        # append speech_type only if it differs from category and isn't 'mixed'
        if speech_type and speech_type != "mixed" and speech_type != category:
            label = f"{category}-{speech_type}"
        else:
            label = category
        return f"{sl}({label})#{chunk_idx}"

    @mo.cache
    def chunk_texts(
        df: pd.DataFrame,
        chunk_size: int = 2000,
    ) -> pd.DataFrame:
        """
        Turn each row of df into token‐chunks of size chunk_size,
        preserving category, filename, author, work, and producing
        a `chunk_label`.
        """
        records: list[dict] = []
        for _, row in df.iterrows():
            tokens = row["text"].split()
            n_chunks = (len(tokens) + chunk_size - 1) // chunk_size
            for idx in range(n_chunks):
                seg = " ".join(tokens[idx * chunk_size : (idx + 1) * chunk_size])
                label_idx = idx + 1 if idx + 1 < n_chunks else "last"
                records.append(
                    {
                        "text": seg,
                        "category": row["category"],
                        "speech_type": row["speech_type"],
                        "filename": row["filename"],
                        "author": row["author"],
                        "work": row["work"],
                        "chunk_label": format_chunk_label(
                            row["filename"],
                            row["category"],
                            row["speech_type"],
                            label_idx,
                        ),
                    }
                )
        return pd.DataFrame(records)

    @mo.cache
    def train_scikit_cached(
        texts: list[str],
        categories: list[str],
        filenames: list[str],
        min_df: float = 0.25,
        max_df: float = 0.8,
        max_features: int = 200,
        stop_words: list[str] | None = None,
    ) -> tuple[
        st.Corpus,
        scipy.sparse.spmatrix,
        TfidfVectorizer,
        list[str],
        list[str],
    ]:
        """Fit TF-IDF + CountVectorizer & build a st.Corpus on already‐chunked data.
        stop_words: list of tokens to filter out or None.
        """

        # texts, categories, filenames are assumed already chunked upstream
        tfv = TfidfVectorizer(
            min_df=min_df,
            max_df=max_df,
            max_features=max_features,
            stop_words=stop_words,
        )
        X_tfidf = tfv.fit_transform(texts)
        y_codes = pd.Categorical(
            categories, categories=pd.Categorical(categories).categories
        ).codes

        scikit_corpus = st.CorpusFromScikit(
            X=tfv.fit_transform(texts),
            y=y_codes,
            feature_vocabulary=tfv.vocabulary_,
            category_names=list(pd.Categorical(categories).categories),
            raw_texts=texts,
        ).build()

        return scikit_corpus, X_tfidf, tfv, categories, filenames

    @mo.cache
    def kwic_search(
        texts: list[str],
        keyword: str,
        context_chars: int = 20,
    ) -> pd.DataFrame:
        """
        KWIC on a list of strings.
        Returns rows with columns:
          - original_index: index in `texts`
          - before, keyword, after: context snippets
        """
        import re
        import pandas as pd

        pattern = rf"\b{re.escape(keyword)}\b"
        results: list[dict] = []
        for idx, txt in enumerate(texts):
            txt = str(txt)
            for m in re.finditer(pattern, txt, re.IGNORECASE):
                s, e = m.span()
                results.append(
                    {
                        "original_index": idx,
                        "before": txt[max(0, s - context_chars) : s],
                        "keyword": txt[s:e],
                        "after": txt[e : min(len(txt), e + context_chars)],
                    }
                )
        return pd.DataFrame(
            results,
            columns=["original_index", "before", "keyword", "after"],
        )

    def split_speech_text(text: str) -> tuple[str, str]:
        """
        Extract all quoted spans as 'speech' and the remainder as 'non-speech'
        for a single text string.
        """
        rx = re.compile(r"“[^”]+”")
        rx_multi = re.compile(r"“[^”]+$")
        spans = [(m.start(), m.end()) for m in rx.finditer(text)]
        spans += [(m.start(), m.end()) for m in rx_multi.finditer(text)]

        # collect speech segments
        speech = [text[s:e] for s, e in spans]

        # remove speech spans to form non-speech
        ns_text = text
        for s, e in sorted(spans, reverse=True):
            ns_text = ns_text[:s] + ns_text[e:]
        non_speech = (
            [ns_text] if spans and ns_text.strip() else ([text] if not spans else [])
        )

        return "\n".join(speech), "\n".join(non_speech)

    def _load_files(uploaded, defaults):
        if uploaded:
            names = [f.name for f in uploaded]
            texts = [f.contents.decode("utf-8") for f in uploaded]
        else:
            names = defaults
            texts = [Path(fn).read_text(encoding="utf-8") for fn in defaults]
        return names, texts

    def prepare_files(
        uploaded: list, defaults: list[str], split: bool = False
    ) -> pd.DataFrame:
        """
        Ingest uploaded vs. default files into a DataFrame with columns:
        ['filename','raw_text','category' (if split),'author','work'].
        """

        names, raws = _load_files(uploaded, defaults)
        records: list[dict] = []
        for name, raw in zip(names, raws):
            if split:
                sp, ns = split_speech_text(raw)
                records.append(
                    {
                        "filename": name,
                        "raw_text": sp,
                        "speech_type": "speech",
                    }
                )
                records.append(
                    {
                        "filename": name,
                        "raw_text": ns,
                        "speech_type": "non-speech",
                    }
                )
            else:
                records.append(
                    {
                        "filename": name,
                        "raw_text": raw,
                        "speech_type": "mixed",
                    }
                )

        df_p = pd.DataFrame(records)

        # infer author & work from the file's true stem (no extension, no "_advanced")
        def _extract_auth_work(fn: str) -> tuple[str, str]:
            base = Path(fn).stem.replace("_advanced", "")
            auth, *rest = base.split("-", 1)
            work_raw = rest[0] if rest else base
            return (
                auth.replace("_", " ").title(),
                work_raw.replace("_", " ").title(),
            )

        aw = df_p["filename"].apply(_extract_auth_work)
        df_p["author"], df_p["work"] = zip(*aw)
        return df_p

    return (
        build_corpus_cached,
        chunk_texts,
        kwic_search,
        parse_texts,
        prepare_files,
        train_scikit_cached,
    )


@app.cell
def intro():
    mo.md(
        r"""
    # Scattertext on English novels from StandardEbooks / StandardEbooksの近代文学作品のScattertext可視化

    ## 概要

    2つの異なるカテゴリのテキストファイル群をアップロードし、その差異をScattertextで可視化します。
    オプショナルで機械学習モデルで分類をし、モデルの分類制度とモデルが識別に用いるトークンも確認できます。

    > 会話文認識機能はStandardEbooks独自のフォーマットに依存するため、他の資料には対応しないことがあります。

    ## ワークフロー

    1. テキストファイルをアップロード(デフォルトを使う場合はそのままSubmitしてください)
    2. データ内容を確認・修正
    3. チャンク&サンプリング設定
    4. Scattertextによる可視化
    5. PCAとCAのbiplot、階層的クラスタリングのデンドログラムでサンプル、カテゴリと素性の分布と関係を観察
    6. 気になるサンプルをドロップダウンで選択し、内容を確認

    > 単語分割には、[spaCy](https://spacy.io/)([en_core_web_sm](https://spacy.io/models/en#en_core_web_sm)モデル)を使用しています。
    """
    )
    return


@app.cell
def data_settings():
    category_name = mo.ui.text(
        label="カテゴリ名(例:著者名・時代区分など)",
        placeholder="例:時代・性別・著者など",
        value="著者",
        full_width=True,
    )
    label_a = mo.ui.text(
        label="Aのラベル(作者)",
        placeholder="自動推論 (e.g. E R Eddison)",
        value="E R Eddison",
        full_width=True,
    )
    files_a = mo.ui.file(
        label="Aのファイルアップロード(UTF-8、.txt形式)",
        multiple=True,
        kind="area",
    )
    ### Category form
    label_b = mo.ui.text(
        label="Bのラベル(作者)",
        placeholder="自動推論 (e.g. H G Wells)",
        value="H G Wells",
        full_width=True,
    )
    files_b = mo.ui.file(
        label="Bのファイルアップロード(UTF-8、.txt形式)",
        multiple=True,
        kind="area",
    )
    split_speech = mo.ui.switch(
        label="Split speech vs non-speech segments?",
        value=True,
    )
    author_tpl = r"""
    ## Category Comparisonモード

    ※ ファイルはプレインテキスト形式必須(.txt, UTF-8エンコーディング)
    ※ ファイル名形式: `author_name-title_text.txt`

    {category_name}

    ### グループA
    {label_a}
    {files_a}

    ### グループB
    {label_b}
    {files_b}
    {split_speech}
    """
    category_form = (
        mo.md(author_tpl)
        .batch(
            category_name=category_name,
            label_a=label_a,
            files_a=files_a,
            label_b=label_b,
            files_b=files_b,
            split_speech=split_speech,
        )
        .form(show_clear_button=True, bordered=True)
    )

    ### Speech vs Non-Speech form
    speech_files = mo.ui.file(
        label="Speechモード用ファイルアップロード(UTF-8、.txt形式)",
        multiple=True,
        kind="area",
    )
    speech_tpl = r"""
    ## Speech vs Non-Speechモード

    ※ ファイルはプレインテキスト形式必須(.txt, UTF-8エンコーディング)  
    ※ ファイル名形式: `author_name-title_text.txt`

    {files_s}
    """
    speech_form = (
        mo.md(speech_tpl)
        .batch(files_s=speech_files)
        .form(show_clear_button=True, bordered=True)
    )

    mode_tabs = mo.ui.tabs(
        {
            "Speech vs Non-Speech": speech_form,
            "Category Comparison": category_form,
        }
    )
    mode_tabs
    return category_form, mode_tabs, speech_form, split_speech


@app.cell
def data_check(
    category_form,
    mode_tabs,
    parse_texts,
    prepare_files,
    speech_form,
    split_speech,
):
    mo.stop(mode_tabs.value == "Speech vs Non-Speech" and speech_form.value is None)
    mo.stop(mode_tabs.value == "Category Comparison" and category_form.value is None)

    validation_messages: list[str] = []

    if mode_tabs.value == "Speech vs Non-Speech":
        defaults = [
            "e_r_eddison-the_worm_ouroboros_advanced.txt",
            "h_g_wells-the_wonderful_visit_advanced.txt",
        ]
        df_pre = prepare_files(
            speech_form.value.get("files_s", []),
            defaults,
            split=True,
        )
        data = df_pre.rename(columns={"raw_text": "text"})
        # use the speech‐vs‐non‐speech flag as our category
        data["category"] = data["speech_type"]
        mo.md(
            f"## Data preview (speech vs non-speech)\n"
            f"{mo.ui.table(data, selection=None)}"
        )
        data_form = SimpleNamespace(
            value={
                "category_name": "Speech vs Non-speech",
                "label_a": "speech",
                "label_b": "non-speech",
            }
        )
    elif category_form.value is not None and mode_tabs.value == "Category Comparison":
        # Category vs Category
        if category_form.value["label_a"] == category_form.value["label_b"]:
            validation_messages.append(
                "⚠️ **警告**: グループAとBのラベルが同じです。AとBは異なるラベルを設定してください。\n"
            )

        if not category_form.value["files_a"] and not category_form.value["files_b"]:
            validation_messages.append(
                "ℹ️ ファイルが未指定のため、デフォルトサンプルを使用しています。\n"
            )

        defaults_a = ["e_r_eddison-the_worm_ouroboros_advanced.txt"]
        df_a = prepare_files(
            category_form.value["files_a"],
            defaults_a,
            split=split_speech.value,
        )
        df_a["category"] = (
            [category_form.value["label_a"]] * len(df_a)
            if category_form.value["files_a"]
            else [category_form.value["label_a"]] * len(df_a)
        )

        defaults_b = ["h_g_wells-the_wonderful_visit_advanced.txt"]
        df_b = prepare_files(
            category_form.value["files_b"],
            defaults_b,
            split=split_speech.value,
        )
        df_b["category"] = [category_form.value["label_b"]] * len(df_b)

        data = pd.concat([df_a, df_b], ignore_index=True)
        # tokenize text if not already (optional)
        data["text"] = parse_texts(list(data["raw_text"]))
        data_form = category_form
    else:
        data = None
        validation_messages.append(
            f"❌ **エラー**: {mode_tabs.value}: {category_form.value}, {speech_form.value}\n"
        )
        data_form = None

    mo.md(f"""
    ## データ確認

    {"**警告**:\n" if validation_messages else ""}
    {"\n".join(map(lambda x: f"- {x}", validation_messages))}

    解析済テキスト一覧:
    {
        mo.ui.table(
            data,
            selection=None,
            format_mapping={"text": lambda s: s[:20] + "..."},
        )
        if (data is not None and not data.empty)
        else "No data"
    }
    """)
    return data, data_form


@app.cell
def sampling_controls_setup():
    chunk_size = mo.ui.slider(
        start=500,
        stop=50_000,
        value=2000,
        step=500,
        label="1チャンクあたり最大トークン数",
        full_width=True,
    )
    sample_frac = mo.ui.slider(
        start=0.1,
        stop=1.0,
        value=0.2,
        step=0.05,
        label="使用割合(1.0で全データ)",
        full_width=True,
    )
    sampling_form = (
        mo.md("{chunk_size}\n{sample_frac}")
        .batch(chunk_size=chunk_size, sample_frac=sample_frac)
        .form(show_clear_button=True, bordered=False)
    )
    sampling_form
    return chunk_size, sample_frac, sampling_form


@app.cell
def _(build_corpus_cached, chunk_texts, data, sample_frac, sampling_form):
    mo.stop(sampling_form.value is None)

    with mo.status.spinner("コーパスをサンプリング中…"):
        # chunk the DataFrame
        chunk_df = chunk_texts(data, sampling_form.value["chunk_size"])
        # optional subsampling
        if sample_frac.value < 1.0:
            chunk_df = chunk_df.sample(frac=sample_frac.value, random_state=RANDOM_SEED)

        texts = chunk_df["text"].tolist()
        cats = chunk_df["category"].tolist()
        fnames = chunk_df["chunk_label"].tolist()
        authors = chunk_df["author"].tolist()
        works = chunk_df["work"].tolist()
        speech_types = chunk_df["speech_type"].tolist()

        corpus = build_corpus_cached(texts, cats)
    return authors, cats, corpus, fnames, speech_types, texts, works


@app.cell
def sampling_controls(chunk_size):
    mo.md("トークン数を増やすと処理時間が長くなります").callout(
        kind="info"
    ) if chunk_size.value > 30_000 else None
    return


@app.cell
def plot_main_scatterplot(corpus, data_form, fnames):
    cat_name = data_form.value["category_name"]

    with mo.status.spinner("Scatterplot作成中…"):
        html = st.produce_scattertext_explorer(
            corpus,
            category=data_form.value["label_a"],
            category_name=f"{cat_name}: {data_form.value['label_a']}",
            not_category_name=f"{cat_name}: {data_form.value['label_b']}",
            width_in_pixels=1000,
            metadata=fnames,
        )

    mo.vstack(
        [
            mo.md(f"""
            # Scattertextの結果
            ### Scattertext可視化の見方
            -   (縦)上に行くほど{data_form.value["label_a"]}で相対的に多く使われるトークン
            -   (横)右に行くほど{data_form.value["label_b"]}で相対的に多く使われるトークン

            HTMLをダウンロードしてブラウザで開くと見やすい
            """),
            mo.iframe(html),
        ]
    )
    return (html,)


@app.cell
def _(html):
    download_button = mo.download(
        data=html.encode(),
        filename="scattertext_analysis.html",
        label="ScatterText可視化結果をダウンロード",
    )

    mo.md(f"{download_button}")
    return


@app.cell
def _():
    mo.md(
        r"""
    # 探索的検証

    クラスター分析のデンドログラムと主成分分析(biplot)による探索的検証を行います。

    Biplotでは各テキストが丸点で、各素性が矢印で同じプロットで示されています。
    矢印の色が赤の場合、その素性の負荷量絶対値が高く、色が青いの場合は、どの主成分で高くないという意味になります。
    """
    )
    return


@app.cell
def _():
    min_df_setting = mo.ui.slider(
        start=0.0,
        stop=1.0,
        step=0.05,
        value=0.25,
        show_value=True,
        include_input=True,
        label="Minimum proportion of samples feature appears in",
    )
    max_df_setting = mo.ui.slider(
        start=0.0,
        stop=1.0,
        step=0.05,
        value=0.8,
        show_value=True,
        include_input=True,
        label="Maximum proportion of samples feature appears in",
    )
    max_features_setting = mo.ui.slider(
        start=10,
        stop=10_000,
        step=1,
        value=100,
        show_value=True,
        include_input=True,
        label="Maximum number of features to use",
    )

    mo.vstack(
        [
            mo.md(
                "### 素性設定\n\nどのような単語を分析に使用するかを下記のスライダーで決めます。標準では、ほとんど全ての文章に現る単語、または極端に少ない文章にしか現れない単語が除外されています。そのうえで、$\\mathrm{tfidf}$の値上位100件まで素性としています。"
            ),
            min_df_setting,
            max_df_setting,
            max_features_setting,
        ]
    )
    return max_df_setting, max_features_setting, min_df_setting


@app.cell
def _(max_df_setting, min_df_setting):
    min_max_check = None
    if max_df_setting.value <= min_df_setting.value:
        min_max_check = mo.md(f"**Error**: minimum value {min_df_setting.value} must be smaller then maximum value {max_df_setting.value}.\n\nChange the sliders so that the min is smaller than the max.").callout(kind="danger")
    min_max_check
    return (min_max_check,)


@app.cell
def stopword_switch():
    stop_filter = mo.ui.switch(label="Enable stop-word filtering?", value=False)
    stop_filter
    return (stop_filter,)


@app.cell
def stopword_source(stop_filter):
    if stop_filter.value:
        sw_source = mo.ui.dropdown(
            options=["spaCy", "Custom", "Both"],
            value="spaCy",
            label="Stop-word source",
            full_width=True,
        )
    else:
        sw_source = None
    sw_source
    return (sw_source,)


@app.cell
def custom_stopword_editor(sw_source):
    if sw_source and sw_source.value in ("Custom", "Both"):
        empty = pd.DataFrame({"stopword": []}, dtype=pd.StringDtype())
        editor = mo.ui.data_editor(empty).form(
            label="Your custom stop-words", bordered=True
        )
    else:
        editor = None
    editor
    return (editor,)


@app.cell
def final_stopwords(editor, stop_filter, sw_source):
    # if master switch off → no filtering
    if stop_filter.value:
        # require a source choice
        mo.stop(sw_source is None, mo.md("Choose stop-word source"))

        sw: set[str] = set()
        if sw_source.value in ("spaCy", "Both"):
            from spacy.lang.en.stop_words import STOP_WORDS

            sw.update(STOP_WORDS)

        if sw_source.value in ("Custom", "Both"):
            mo.stop(
                editor is None or editor.value is None,
                mo.md("Enter at least one custom stop-word"),
            )
            for tok in editor.value["stopword"].dropna().astype(str):
                tok = tok.strip()
                if tok:
                    sw.add(tok)
        sw = list(sw)
    else:
        sw = None
    return (sw,)


@app.cell
def _(
    cats,
    fnames,
    max_df_setting,
    max_features_setting,
    min_df_setting,
    min_max_check,
    sw: set[str],
    texts,
    train_scikit_cached,
):
    mo.stop(min_max_check is not None)

    scikit_corpus, tfidf_X, vectorizer, chunk_cats, chunk_fnames = train_scikit_cached(
        texts,
        cats,
        fnames,
        min_df=min_df_setting.value,
        max_df=max_df_setting.value,
        max_features=max_features_setting.value,
        stop_words=sw,
    )
    return chunk_cats, chunk_fnames, tfidf_X, vectorizer


@app.cell
def _(chunk_cats, tfidf_X):
    # from sklearn.model_selection import train_test_split

    # X_train, X_test, y_train, y_test = train_test_split(
    #     tfidf_X,
    #     chunk_cats,
    #     test_size=None,
    #     random_state=RANDOM_SEED,
    # )

    X_train, X_test, y_train, y_test = tfidf_X, chunk_cats, [], []
    return (X_train,)


@app.cell
def _(X_train, chunk_fnames, texts, vectorizer):
    tf_idf_formula = r"$\mathrm{tfidf}(t,d,D)=\mathrm{tf} (t,d)\cdot \mathrm{idf}(t,D)$"
    D_formula = r"|\{d:d\in D{\text{ and }}t\in d\}|"
    idf_formula = rf"$\mathrm{{idf}}(t,D)=\log{{\frac{{N}}{{{D_formula}}}}}$"
    tf_formula = r"${\displaystyle \mathrm {tf} (t,d)=\textrm{number of times }t\textrm{ appears in }d}$"

    X_df = pd.DataFrame(
        X_train.toarray(),
        index=chunk_fnames,
        columns=vectorizer.get_feature_names_out(),
    )

    mo.md(rf"""
    ### サンプルと素性の行列

    各セルには、そのテキスト(行)に出現する素性(=単語)(列)の$\mathrm{{tfidf}}$の値です。
    $\mathrm{{tfidf}}$が高いほど、その単語の重要度が高いという意味になります。
    単語が多くの文章に出現する場合は、低い値になります。

    {tf_idf_formula}

    {idf_formula}

    {tf_formula}

    - ${{\displaystyle D}}$: is the set of all documents in the corpus
    - ${{\displaystyle N}}$: total number of documents in the corpus ${{\displaystyle N={{|D|}}}}$
    - ${D_formula}$: number of documents with $t$

    {mo.ui.table(X_df, selection=None)}
    """)

    # build raw‐counts table on identical vocab
    from sklearn.feature_extraction.text import CountVectorizer

    cv = CountVectorizer(vocabulary=vectorizer.vocabulary_)
    count_mat = cv.fit_transform(texts)
    count_df = pd.DataFrame(
        count_mat.toarray(),
        index=chunk_fnames,
        columns=vectorizer.get_feature_names_out(),
    )

    return X_df, count_df


@app.cell
def pca_biplot(chunk_cats, tfidf_X, vectorizer):
    X = tfidf_X.toarray() if hasattr(tfidf_X, "toarray") else tfidf_X
    feature_names = vectorizer.get_feature_names_out()

    model = pca(normalize=False, n_components=3)
    results = model.fit_transform(
        X,
        col_labels=feature_names,
        row_labels=chunk_cats,
    )

    three_switch = mo.ui.switch(label="3D")
    three_switch
    return X, model, results, three_switch


@app.cell
def _(model, results, three_switch):
    model.biplot(
        legend=True,
        figsize=(12, 8),
        fontsize=12,
        s=20,
        arrowdict={"alpha": 0.0},
        PC=[0, 1, 2] if three_switch.value else [0, 1],
    )
    # labels=np.array(chunk_fnames)
    topfeat = results["topfeat"]

    mo.vstack(
        [
            mo.md(
                r"""## Principal Components Analysis / 主成分分析

                [Principal Components Analysis](https://erdogant.github.io/pca/pages/html/index.html) (PCA)は、$\mathrm{{tfidf}}$スコアを連続的な数値データとして扱い、データセット内の分散を最も多く説明する単語の線形結合を特定します。この分析により、以下の点が明らかになります。

                - 主成分によって会話文と地の文(あるいは他の分析カテゴリ)を最も効果的に区別する単語の組み合わせが判明します。
                - 会話文と地の文サンプル間の分散に最も寄与する共起語彙パターン、および判別力の高い語彙が特定されます。
                - PCAは傾度に沿った線形関係を仮定するため、言語スタイルの緩やかな変化も示されます。
                - $\mathrm{{tfidf}}$スコアの連続性を保持したまま、次元削減が実現されます。

                **主成分とは?**  

                主成分は「データのばらつきを一番よく説明する単語の線形結合」です。  
                数式よりも「語彙の座標軸」と捉えてください。
                """
            ),
            mo.mpl.interactive(plt.gcf()),
            topfeat,
        ]
    )
    return


@app.cell
def _():
    mo.md(
        r"""
    ## Correspondence Analysis / 対応分析

    対応分析(CA)のbiplotでは、主成分分析のbiplotと似ているような分析として、サンプルと素性の関係が観察できますが、いくつかの違いがあります。
    対応分析を行うには、$\mathrm{tfidf}$行列ではなく粗頻度行列をカテゴリカルな形式の分割表(contingency table)に変換する必要があります。次に、そのデータを連関表として解析します。この手法により、

    - 会話文と地の文カテゴリと特定単語出現パターンとの関連性を検討
    - サンプルのカテゴリと単語特徴量との離散的な関連として関係性を示すバイプロットを作成
    - 各カテゴリに最も特徴的な単語を、PCAでのユークリッド距離ではなくカイ二乗距離を用いて抽出
    - サンプルと単語の両方をランダムな観測値として対称的に扱うことができる

    といった分析が可能となります。

    **CAの出力の読み取り方**

    行(サンプル)と列(単語)が近いほど、その単語がそのサンプル群に特徴的です。  
    プロット上で原点に近い点は「どのカテゴリにも偏らない語」です。
    """
    )
    return


@app.cell
def _(X_df, authors, chunk_cats, speech_types, works):
    import itertools

    # Build a small DF to test each dim‐combo
    df_chk = X_df.copy()
    df_chk["author"] = authors
    df_chk["category"] = chunk_cats
    df_chk["work"] = works
    df_chk["speech_type"] = speech_types

    # filter out collinear dimensions by Cramér’s V
    from scipy.stats import chi2_contingency

    def cramers_v(m: np.ndarray) -> float:
        """Compute Cramér’s V from a contingency‐matrix."""
        chi2 = chi2_contingency(m, correction=False)[0]
        n = m.sum()
        k = min(m.shape) - 1
        return np.sqrt(chi2 / (n * k))

    cols = ["author", "category", "work", "speech_type"]
    vmat = pd.DataFrame(index=cols, columns=cols, dtype=float)
    for i in cols:
        for j in cols:
            if i == j:
                vmat.loc[i, j] = 1.0
            else:
                m = pd.crosstab(df_chk[i], df_chk[j]).values
                vmat.loc[i, j] = cramers_v(m)

    print(vmat)

    # drop any dimension that is nearly collinear with another (V > .95)
    high_thresh = 0.95
    # only drop the later dimension in each tuple
    drop = {
        j for i, j in itertools.combinations(cols, 2) if vmat.loc[i, j] > high_thresh
    }
    # special‐case: in pure speech vs non-speech mode (category == speech_type),
    # keep speech_type (the more descriptive) and drop category instead
    if vmat.loc["category", "speech_type"] > high_thresh and chunk_cats == speech_types:
        drop.discard("speech_type")
        drop.add("category")
    filtered_dims = [d for d in cols if d not in drop]
    print(drop, filtered_dims)

    # warn on moderate association .3 ≤ V ≤ .6
    collinear_warns = []
    for i in cols:
        for j in cols:
            if i < j and 0.3 <= vmat.loc[i, j] <= 0.6:
                collinear_warns.append(
                    f"⚠️ `{i}` vs `{j}` moderate association (V={vmat.loc[i, j]:.2f})"
                )
    collinear_message = mo.md("## Warning\n" + "\n".join(collinear_warns)).callout(
        kind="warning"
    )

    dims_all = filtered_dims  # start with our filtered labels
    options: list[str] = []
    # Enumerate all non-empty combinations; keep those yielding >2 groups
    for r in range(1, len(dims_all) + 1):
        for combo in itertools.combinations(dims_all, r):
            if df_chk.groupby(list(combo)).ngroups > 2:
                options.append("|".join(combo))

    mo.stop(
        not options,
        mo.md(
            f"No category combination yielding more than two rows, so cannot perform CA.\n{collinear_message}"
        ),
    )

    ca_group_by = mo.ui.dropdown(
        options=options,
        value=options[0],
        label="Group by (dims that yield >2 rows)",
        full_width=True,
    )
    ca_group_by
    return (ca_group_by,)


@app.cell
def _(authors, ca_group_by, chunk_cats, count_df, speech_types, works):
    df = count_df.copy()
    df["author"] = authors
    df["category"] = chunk_cats
    df["work"] = works
    df["speech_type"] = speech_types

    # split "author|work" (etc.) into the actual list of dims
    dims = ca_group_by.value.split("|")

    # sum only numeric (feature) columns by group
    num_cols = df.select_dtypes(include="number").columns.tolist()
    ct = df.groupby(dims)[num_cols].sum()

    # flatten MultiIndex into a single‐level index
    if len(dims) > 1:
        ct.index = ["|".join(idx) for idx in ct.index]
    else:
        ct.index = ct.index.astype(str)

    mo.md(f"""
    ### カテゴリと素性の行列

    {mo.ui.table(ct, selection=None)}
    """)
    return (ct,)


@app.cell
def _(ct):
    ca_model = prince.CA(
        n_components=2,
        n_iter=10,
        copy=True,
        check_input=True,
        engine="sklearn",
        random_state=RANDOM_SEED,
    )
    ca_model = ca_model.fit(ct)
    ca_model.plot(
        ct,
        x_component=0,
        y_component=1,
        show_row_markers=True,
        show_column_markers=True,
        show_row_labels=True,
        show_column_labels=True,
    )
    return


@app.cell
def _():
    linkage_methods = mo.ui.dropdown(
        options=[
            "ward",
            "single",
            "complete",
            "average",
        ],
        value="ward",
        label="Linkage Method",
    )
    distance_metrics = mo.ui.dropdown(
        options=["cosine", "euclidean", "cityblock", "hamming"],
        value="cosine",
        label="Distance Metric",
    )
    dendrogram_height = mo.ui.number(
        label="Dendrogram plot height (increase if hard to see labels)",
        start=800,
        value=1200,
        step=100,
    )

    d_stack = mo.hstack([linkage_methods, distance_metrics], justify="start")

    mo.md(f"""
    ## Hierarchical Clustering / 階層的クラスタリング

    階層的クラスタリングは、(予め設定したカテゴリに関わらず)サンプル間の$\\mathrm{{tfidf}}$単語使用パターンの類似性に基づき、直接的にグループ化を行います。

    - サンプル同士が異なる類似度レベルでどのようにグループ化されるかを示す樹状図(デンドログラム)を生成
    - サンプル間の距離計算において、定めた全ての$\\mathrm{{tfidf}}$特徴量を保持
    - PCA/CAと比べ、特徴量間の関係ではなく、サンプル間の関係性に着目(ただし、行列を回転し、逆の分析もできる)
    - 高次元$\\mathrm{{tfidf}}$ベクトル間の類似度を測定するために、ユークリッド距離やコサイン距離といった距離尺度を用いる
    - 類似した単語使用パターンを有するサンプル群の離散的なクラスタを構築

    {d_stack}
    {dendrogram_height}
    """)
    return dendrogram_height, distance_metrics, linkage_methods


@app.cell
def _(X, chunk_fnames, dendrogram_height, distance_metrics, linkage_methods):
    import plotly.figure_factory as ff
    import scipy.spatial.distance as ssd
    import scipy.cluster.hierarchy as sch

    distfun = lambda M: ssd.pdist(M, metric=distance_metrics.value)
    linkagefun = lambda D: sch.linkage(D, method=linkage_methods.value)

    fig = ff.create_dendrogram(
        X,
        orientation="left",
        labels=list(chunk_fnames),
        distfun=distfun,
        linkagefun=linkagefun,
    )
    fig.update_layout(
        width=800,
        height=dendrogram_height.value,
        title=f"Dendrogram using {linkage_methods.value} link method and {distance_metrics.value} distance on samples",
    )

    mo.ui.plotly(fig)
    return distfun, ff, linkagefun


@app.cell
def _(
    X,
    X_df,
    dendrogram_height,
    distance_metrics,
    distfun,
    ff,
    linkage_methods,
    linkagefun,
):
    fig_T = ff.create_dendrogram(
        X.T,
        orientation="left",
        labels=X_df.columns,
        distfun=distfun,
        linkagefun=linkagefun,
    )
    fig_T.update_layout(
        width=800,
        height=dendrogram_height.value,
        title=f"Dendrogram using {linkage_methods.value} link method and {distance_metrics.value} distance on features",
    )

    mo.ui.plotly(fig_T)
    return


@app.cell
def sample_selector(fnames):
    selector_explanation = mo.md(
        "## データの確認\n\n### サンプルの確認\n\n以下の選択肢から任意のサンプルを選ぶとその中身が確認できます。"
    )

    text_selector = mo.ui.dropdown(
        options=list(sorted(fnames)),
        value=fnames[0] if fnames else None,
        label="Select a sample to view",
    )

    mo.vstack([selector_explanation, text_selector])
    return (text_selector,)


@app.cell
def sample_viewer(fnames, text_selector, texts):
    mo.stop(not text_selector.value, "No sample selected.")

    selected_idx = fnames.index(text_selector.value)
    mo.md(f"**{text_selector.value}**\n\n{texts[selected_idx]}")
    return


@app.cell
def _():
    kwic_explanation = mo.md(
        "### KWIC検索\n\nKeyWord In Context (KWIC)は検索語の左右コンテクストを効率的に確認できる可視化方法です。"
    )
    keyword = mo.ui.text(label="Search keyword")
    context_chars = mo.ui.number(label="Context chars", start=0, value=50)
    run_btn = mo.ui.run_button(label="Search")
    mo.vstack([kwic_explanation, keyword, context_chars, run_btn])
    return context_chars, keyword, run_btn


@app.cell
def _(
    authors,
    context_chars,
    keyword,
    kwic_search,
    run_btn,
    speech_types,
    texts,
    works,
):
    mo.stop(not run_btn.value, mo.md("Type a keyword and click Search."))

    kwic_df = kwic_search(texts, keyword.value, context_chars.value)
    if kwic_df.empty:
        kwic_display = mo.md(f"No occurrences of “{keyword.value}” found.")
    else:
        # reattach metadata
        meta = pd.DataFrame(
            {
                "sample_index": range(len(texts)),
                "author": authors,
                "work": works,
                "speech_type": speech_types,
            }
        )
        merged = kwic_df.merge(
            meta,
            left_on="original_index",
            right_on="sample_index",
            validate="many_to_one",
        ).drop(columns=["original_index", "sample_index"])
        kwic_display = mo.ui.table(merged, selection=None)

    kwic_display
    return


@app.cell
def _():
    mo.md(
        r"""
    # まとめ

    これ3つのアプローチをすべて用いることで、異なる視点を得ることができます:

    - **階層的クラスタリング**: データ内の"自然な"グループ分けを明らかにします。例えば、特定の著者の話し方のパターンが一緒にクラスタ化されたり、叙述部分と会話部分が明確に異なるグループを形成したりすることが考えられます。
    - **対応分析**: カテゴリ間の関連性を明らかにします。例えば、異なる著者や発話タイプに最も特徴的な単語がどれであるかを調べることができます。
    - **主成分分析**: 最も識別力の高い単語の組み合わせを特定します。例えば、どの語彙パターンが会話文/地の文や著者間の区別に最も寄与しているかを示すことができます。
    """
    )
    return


@app.cell
def _():
    return


if __name__ == "__main__":
    app.run()