File size: 21,039 Bytes
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
e960361
deb28d9
e960361
 
deb28d9
e960361
deb28d9
e960361
 
 
 
 
 
 
 
deb28d9
e960361
 
 
deb28d9
 
 
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
 
 
e960361
deb28d9
e960361
 
deb28d9
e960361
deb28d9
e960361
 
deb28d9
e960361
deb28d9
e960361
 
 
 
 
deb28d9
e960361
 
deb28d9
 
 
 
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
e960361
 
deb28d9
e960361
deb28d9
e960361
deb28d9
e960361
deb28d9
e960361
 
 
deb28d9
e960361
 
 
 
deb28d9
e960361
 
 
 
 
 
 
 
 
deb28d9
e960361
deb28d9
e960361
 
deb28d9
 
 
e960361
 
deb28d9
e960361
deb28d9
e960361
deb28d9
e960361
 
 
 
 
deb28d9
e960361
 
 
 
deb28d9
e960361
 
 
 
 
deb28d9
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
e960361
 
deb28d9
e960361
 
 
 
 
deb28d9
e960361
 
deb28d9
e960361
 
deb28d9
e960361
 
deb28d9
e960361
 
 
 
deb28d9
 
 
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
 
 
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
 
 
e960361
 
 
 
deb28d9
 
 
 
e960361
 
 
 
 
 
 
 
 
 
 
deb28d9
e960361
 
 
 
 
 
 
 
 
 
 
 
deb28d9
e960361
deb28d9
 
e960361
 
 
 
 
 
deb28d9
 
e960361
 
deb28d9
 
e960361
 
 
 
 
deb28d9
 
e960361
 
 
deb28d9
e960361
 
 
deb28d9
7fd756b
 
e960361
 
 
deb28d9
 
e960361
 
 
deb28d9
e960361
 
 
 
deb28d9
 
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
 
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
 
e960361
 
deb28d9
 
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
e960361
deb28d9
e960361
 
 
 
 
 
deb28d9
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
e960361
 
 
 
 
 
 
 
deb28d9
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
 
e960361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb28d9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
# /// script
# requires-python = ">=3.12"
# dependencies = [
#     "altair==5.5.0",
#     "fugashi-plus",
#     "marimo",
#     "numpy==2.2.6",
#     "pandas==2.3.0",
#     "pyarrow",
#     "scattertext==0.2.2",
#     "scikit-learn==1.7.0",
#     "scipy==1.13.1",
# ]
# ///

import marimo

__generated_with = "0.13.15"
app = marimo.App(width="full", app_title="Scattertext on Japanese novels")

with app.setup:
    import marimo as mo
    import itertools
    import fugashi
    import pandas as pd
    import scipy
    import numpy as np
    import random
    import scattertext as st
    from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

    RANDOM_SEED = 42
    random.seed(RANDOM_SEED)
    np.random.seed(RANDOM_SEED)


@app.cell
def function_export():
    @mo.cache
    def parse_texts(texts: list[str]) -> list[str]:
        """Tokenize a list of raw strings via fugashi (MeCab)."""

        tagger = fugashi.Tagger("-Owakati -d ./unidic-novel -r ./unidic-novel/dicrc")
        return [tagger.parse(txt).strip() for txt in texts]

    @mo.cache
    def build_corpus_cached(
        texts: list[str],
        categories: list[str],
    ) -> st.Corpus:
        """Build or reuse cached Scattertext corpus."""

        df = pd.DataFrame({"text": texts, "category": categories})
        return (
            st.CorpusFromPandas(
                df,
                category_col="category",
                text_col="text",
                nlp=st.whitespace_nlp_with_sentences,
            )
            .build()
            .get_unigram_corpus()
            .compact(st.AssociationCompactor(2000))
        )

    @mo.cache
    def chunk_texts(
        texts: list[str],
        categories: list[str],
        filenames: list[str],
        chunk_size: int = 2000,
    ) -> tuple[list[str], list[str], list[str]]:
        """Chunk each text into segments of chunk_size tokens, preserving category and filename."""
        chunked_texts = []
        chunked_cats = []
        chunked_fnames = []
        for text, cat, fname in zip(texts, categories, filenames):
            tokens = text.split()
            for i in range(0, len(tokens), chunk_size):
                chunk = " ".join(tokens[i : i + chunk_size])
                chunked_texts.append(chunk)
                chunked_cats.append(cat)
                chunked_fnames.append(f"{fname}#{i // chunk_size + 1}")
        return chunked_texts, chunked_cats, chunked_fnames

    @mo.cache
    def train_scikit_cached(
        texts: list[str], categories: list[str], filenames: list[str]
    ) -> tuple[
        st.Corpus,
        scipy.sparse.spmatrix,
        TfidfVectorizer,
        list[str],
        list[str],
    ]:
        """Fit TF-IDF + CountVectorizer & build a st.Corpus on chunked data."""

        chunk_texts_out, chunk_cats, chunk_fnames = chunk_texts(
            texts, categories, filenames
        )
        tfv = TfidfVectorizer()
        X_tfidf = tfv.fit_transform(chunk_texts_out)
        cv = CountVectorizer(vocabulary=tfv.vocabulary_, max_features=100)
        y_codes = pd.Categorical(
            chunk_cats, categories=pd.Categorical(chunk_cats).categories
        ).codes

        scikit_corpus = st.CorpusFromScikit(
            X=cv.fit_transform(chunk_texts_out),
            y=y_codes,
            feature_vocabulary=tfv.vocabulary_,
            category_names=list(pd.Categorical(chunk_cats).categories),
            raw_texts=chunk_texts_out,
        ).build()

        return (
            scikit_corpus,
            X_tfidf,
            tfv,
            chunk_cats,
            chunk_fnames,
        )

    return build_corpus_cached, chunk_texts, parse_texts, train_scikit_cached


@app.cell
def intro():
    mo.md(
        r"""
    # Scattertext on Japanese novels / 近代文学作品のScattertext可視化

    ## 概要

    2つの異なるカテゴリのテキストファイル群をアップロードし、その差異をScattertextで可視化します。
    オプショナルで機械学習モデルで分類をし、モデルの分類制度とモデルが識別に用いるトークンも確認できます。

    ## ワークフロー

    1. テキストファイルをアップロード(デフォルトを使う場合はそのままSubmitしてください)
    2. データ内容を確認・修正
    3. チャンク&サンプリング設定
    4. Scattertextによる可視化
    5. (任意)分類モデルによる性能検証

    > 単語分割には、[近現代口語小説UniDic](https://clrd.ninjal.ac.jp/unidic/download_all.html#unidic_novel)を使用しています。異なる時代やジャンルのテキストには不向きです。
    """
    )
    return


@app.cell
def data_settings():
    # 1) Create each widget
    category_name = mo.ui.text(
        label="カテゴリ名(例:著者名・時代区分など)",
        placeholder="例:時代・性別・著者など",
        value="著者",
        full_width=True,
    )
    label_a = mo.ui.text(
        label="Aのラベル", placeholder="例:夏目漱石", value="夏目漱石", full_width=True
    )
    files_a = mo.ui.file(
        label="Aのファイルアップロード(UTF-8、.txt形式)", multiple=True, kind="area"
    )
    label_b = mo.ui.text(
        label="Bのラベル", placeholder="例:海野十三", value="海野十三", full_width=True
    )
    files_b = mo.ui.file(
        label="Bのファイルアップロード(UTF-8、.txt形式)", multiple=True, kind="area"
    )

    tpl = r"""
    ## データと分析の設定

    ※ 初期では夏目漱石と海野十三から各2作品をサンプルコーパスにしています。設定を変更せずSubmitすると、サンプルコーパスでの分析になります。ファイルをアップロードする場合は忘れずにカテゴリとラベルも変更してください。

    ※ ファイルはプレインテキスト形式必須(.txt, UTF-8エンコーディング)

    {category_name}

    ### グループA
    {label_a}
    {files_a}

    ### グループB
    {label_b}
    {files_b}
    """

    data_form = (
        mo.md(tpl)
        .batch(
            # info_box=info_box,
            category_name=category_name,
            label_a=label_a,
            files_a=files_a,
            label_b=label_b,
            files_b=files_b,
        )
        .form(show_clear_button=True, bordered=True)
    )
    data_form
    return data_form, label_a, label_b


@app.cell
def data_check(data_form, parse_texts):
    mo.stop(data_form.value is None)

    from pathlib import Path

    validation_messages: list[str] = []

    if data_form.value["label_a"] == data_form.value["label_b"]:
        print("a")
        validation_messages.append(
            "⚠️ **警告**: グループAとBのラベルが同じです。AとBは異なるラベルを設定してください。\n"
        )

    if not data_form.value["files_a"] and not data_form.value["files_b"]:
        validation_messages.append(
            "ℹ️ ファイルが未指定のため、デフォルトサンプルを使用しています。\n"
        )

    try:
        # Group A: either uploaded files or default (坊っちゃん + こころ)
        if data_form.value["files_a"]:
            category_a_texts = (
                f.contents.decode("utf-8") for f in data_form.value["files_a"]
            )
            category_a_names = (f.name for f in data_form.value["files_a"])
        else:
            natsume_1 = Path("Natsume_S_Bocchan.txt").read_text(encoding="utf-8")
            natsume_2 = Path("Natsume_S_Kokoro.txt").read_text(encoding="utf-8")
            category_a_texts = [natsume_1, natsume_2]
            category_a_names = ["Natsume_S_Bocchan.txt", "Natsume_S_Kokoro.txt"]

        # Group B: either uploaded files or default (地球要塞 + 火星兵団)
        if data_form.value["files_b"]:
            category_b_texts = (
                f.contents.decode("utf-8") for f in data_form.value["files_b"]
            )
            category_b_names = (f.name for f in data_form.value["files_b"])
        else:
            unno_1 = Path("Unno_J_Chikyuuyousa.txt").read_text(encoding="utf-8")
            unno_2 = Path("Unno_J_Kaseiheidan.txt").read_text(encoding="utf-8")

            category_b_texts = [unno_1, unno_2]
            category_b_names = ["Unno_J_Chikyuuyousa.txt", "Unno_J_Kaseiheidan.txt"]

        data = pd.DataFrame(
            {
                "category": (
                    [data_form.value["label_a"]]
                    * (
                        len(data_form.value["files_a"])
                        if data_form.value["files_a"]
                        else 2
                    )
                )
                + (
                    [data_form.value["label_b"]]
                    * (
                        len(data_form.value["files_b"])
                        if data_form.value["files_b"]
                        else 2
                    )
                ),
                "filename": itertools.chain(category_a_names, category_b_names),
                "text": itertools.chain(category_a_texts, category_b_texts),
            }
        )

        with mo.status.spinner("コーパスを形態素解析中..."):
            data["text"] = parse_texts(list(data["text"]))

    except Exception as e:
        data = None
        validation_messages.append(
            f"❌ **エラー**: ファイルの読み込みに失敗しました: {str(e)}\n"
        )

    # We need the maximum number of tokens for the slider
    max_tokens = data["text"].map(lambda s: len(s.split())).max()

    mo.md(f"""
    ## データ確認

    {"**警告**:\n" if validation_messages else ""}
    {"\n".join(map(lambda x: f"- {x}", validation_messages))}

    解析済テキスト一覧:
    {mo.ui.table(data, selection="multi", format_mapping={"text": lambda s: s[:20] + "..."})}
    """)
    return (data,)


@app.cell
def sampling_controls_setup():
    chunk_size = mo.ui.slider(
        start=500,
        stop=50_000,
        value=2000,
        step=500,
        label="1チャンクあたり最大トークン数",
        full_width=True,
    )
    sample_frac = mo.ui.slider(
        start=0.1,
        stop=1.0,
        value=0.2,
        step=0.05,
        label="使用割合(1.0で全データ)",
        full_width=True,
    )
    sampling_form = (
        mo.md("{chunk_size}\n{sample_frac}")
        .batch(chunk_size=chunk_size, sample_frac=sample_frac)
        .form(show_clear_button=True, bordered=False)
    )
    sampling_form
    return chunk_size, sample_frac, sampling_form


@app.cell
def _(build_corpus_cached, chunk_texts, data, sample_frac, sampling_form):
    mo.stop(sampling_form.value is None)

    with mo.status.spinner("コーパスをサンプリング中…"):
        texts, cats, fnames = chunk_texts(
            list(data.text),
            list(data.category),
            list(data.filename),
            sampling_form.value["chunk_size"],
        )

        if sample_frac.value < 1.0:
            N = len(texts)
            k = int(N * sampling_form.value["sample_frac"])
            idx = random.sample(range(N), k)
            texts = [texts[i] for i in idx]
            cats = [cats[i] for i in idx]
            fnames = [fnames[i] for i in idx]

        corpus = build_corpus_cached(
            texts,
            cats,
        )
    return cats, corpus, fnames, texts


@app.cell
def sampling_controls(chunk_size):
    mo.md("トークン数を増やすと処理時間が長くなります").callout(
        kind="info"
    ) if chunk_size.value > 30_000 else None
    return


@app.cell
def plot_main_scatterplot(corpus, data_form, fnames):
    cat_name = data_form.value["category_name"]
    with mo.status.spinner("Scatterplot作成中…"):
        html = st.produce_scattertext_explorer(
            corpus,
            category=data_form.value["label_a"],
            category_name=f"{cat_name}: {data_form.value['label_a']}",
            not_category_name=f"{cat_name}: {data_form.value['label_b']}",
            width_in_pixels=1000,
            metadata=fnames,
        )

    mo.vstack(
        [
            mo.md(f"""
            # Scattertextの結果
            ### Scattertext可視化の見方
            -   (縦)上に行くほど{data_form.value["label_a"]}で相対的に多く使われるトークン
            -   (横)右に行くほど{data_form.value["label_b"]}で相対的に多く使われるトークン

            HTMLをダウンロードしてブラウザで開くと見やすい
            """),
            mo.iframe(html),
        ]
    )
    return (html,)


@app.cell
def _(html):
    download_button = mo.download(
        data=html.encode(),
        filename="scattertext_analysis.html",
        label="可視化結果をダウンロード",
    )

    mo.md(f"{download_button}")
    return


@app.cell
def classification_toggle():
    run_model = mo.ui.switch(label="分類モデルを適用する")
    run_model
    return (run_model,)


@app.cell
def _(run_model):
    mo.stop(not run_model.value)

    mo.md(
        r"""
    # 分類モデルによる検証

    2つのカテゴリを分類するモデルを学習し、それぞれのカテゴリを分ける有効な素性(単語)がどれなのかもScattertextで観察できます。
    ここはロジスティック回帰という機械学習モデルを使用しています。
    """
    )
    return


@app.cell
def _(cats, fnames, run_model, texts, train_scikit_cached):
    mo.stop(not run_model.value)

    scikit_corpus, tfidf_X, vectorizer, chunk_cats, chunk_fnames = train_scikit_cached(
        texts, cats, fnames
    )
    return chunk_cats, chunk_fnames, scikit_corpus, tfidf_X, vectorizer


@app.cell
def model_selection(run_model):
    mo.stop(not run_model.value)

    model_dropdown = mo.ui.dropdown(
        options=[
            "LogisticRegression",
            "RandomForestClassifier",
            "GradientBoostingClassifier",
        ],
        value="LogisticRegression",
        label="モデル選択",
    )
    model_dropdown
    return (model_dropdown,)


@app.cell
def hyperparameters(model_dropdown):
    lr_C = mo.ui.slider(0.01, 10.0, value=1.0, step=0.01, label="LR C")
    lr_max_iter = mo.ui.slider(100, 2000, value=1000, step=100, label="LR max_iter")
    rf_n = mo.ui.slider(10, 500, value=100, step=10, label="RF n_estimators")
    rf_max_depth = mo.ui.slider(1, 50, value=10, step=1, label="RF max_depth")
    gb_n = mo.ui.slider(10, 500, value=100, step=10, label="GB n_estimators")
    gb_lr = mo.ui.slider(0.01, 1.0, value=0.1, step=0.01, label="GB learning_rate")
    gb_md = mo.ui.slider(1, 10, value=3, step=1, label="GB max_depth")

    widgets = []
    if model_dropdown.value == "LogisticRegression":
        widgets = {"lr_C": lr_C, "lr_max_iter": lr_max_iter}
    elif model_dropdown.value == "RandomForestClassifier":
        widgets = {"rf_n": rf_n, "rf_max_depth": rf_max_depth}
    else:  # GradientBoostingClassifier
        widgets = {"gb_n": gb_n, "gb_lr": gb_lr, "gb_md": gb_md}

    test_size = mo.ui.slider(0.1, 0.5, value=0.3, step=0.05, label="テストデータ比率")

    model_form = (
        mo.md("### モデルのパラメータ設定\n{widgets}\n{test_size}")
        .batch(
            widgets=mo.ui.dictionary(widgets),
            test_size=test_size,
        )
        .form(show_clear_button=True, bordered=False)
    )

    model_form
    return (model_form,)


@app.cell
def _(
    chunk_cats,
    label_a,
    label_b,
    model_dropdown,
    model_form,
    roc_auc,
    roc_df,
    run_model,
    tfidf_X,
    vectorizer,
):
    mo.stop(not run_model.value or not model_form.value)

    import altair as alt
    from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import (
        auc,
        classification_report,
        confusion_matrix,
        roc_curve,
    )
    from sklearn.model_selection import train_test_split

    X_train, X_test, y_train, y_test = train_test_split(
        tfidf_X,
        chunk_cats,
        test_size=model_form.value["test_size"],
        random_state=RANDOM_SEED,
    )

    name = model_dropdown.value
    if name == "LogisticRegression":
        clf = LogisticRegression(
            C=model_form.value["widgets"]["lr_C"],
            max_iter=int(model_form.value["widgets"]["lr_max_iter"]),
        )
    elif name == "RandomForestClassifier":
        clf = RandomForestClassifier(
            n_estimators=int(model_form.value["widgets"]["rf_n"]),
            max_depth=int(model_form.value["widgets"]["rf_max_depth"]),
            random_state=RANDOM_SEED,
        )
    else:  # GradientBoostingClassifier
        clf = GradientBoostingClassifier(
            n_estimators=int(model_form.value["widgets"]["gb_n"]),
            learning_rate=float(model_form.value["widgets"]["gb_lr"]),
            max_depth=int(model_form.value["widgets"]["gb_md"]),
            random_state=RANDOM_SEED,
        )

    clf.fit(X_train, y_train)
    if hasattr(clf, "feature_importances_"):
        term_scores = clf.feature_importances_
    else:
        term_scores = abs(clf.coef_[0])

    y_pred = clf.predict(X_test)
    report = classification_report(y_test, y_pred, output_dict=True)

    cm = confusion_matrix(y_test, y_pred, labels=clf.classes_)
    cm_df = (
        pd.DataFrame(cm, index=clf.classes_, columns=clf.classes_)
        .reset_index()
        .melt(
            id_vars="index",
            var_name="Predicted",
            value_name="count",
        )
        .rename(columns={"index": "Actual"})
    )

    # pos_idx = list(clf.classes_).index(label_a.value)
    # _proba, roc_auc = None, None
    # roc_df = None
    # if hasattr(clf, "predict_proba"):
    #     probs = clf.predict_proba(X_test)[:, pos_idx]
    #     y_test_arr = np.array(y_test)
    #     fpr, tpr, _ = roc_curve((y_test_arr == label_a.value).astype(int), probs)
    #     roc_auc = auc(fpr, tpr)
    #     roc_df = pd.DataFrame({"fpr": fpr, "tpr": tpr})

    feature_names = vectorizer.get_feature_names_out()
    importances = (
        pd.DataFrame({"単語": feature_names, "重要度": term_scores})
        .sort_values("重要度", ascending=False)
        .head(20)
    )

    imp_chart = (
        alt.Chart(importances)
        .mark_bar()
        .encode(
            x=alt.X("重要度:Q", title="重要度"),
            y=alt.Y("単語:N", sort="-x"),
        )
        .properties(title="Top‐20 重要特徴語", width=600, height=400)
    )
    cm_chart = (
        alt.Chart(cm_df)
        .mark_rect()
        .encode(
            x="Predicted:N",
            y="Actual:N",
            color=alt.Color("count:Q", title="Count"),
            tooltip=["Actual", "Predicted", "count"],
        )
        .properties(title="Confusion Matrix", width=250, height=250)
    )
    # roc_chart = (
    #     alt.Chart(roc_df)
    #     .mark_line(point=True)
    #     .encode(
    #         x=alt.X("fpr:Q", title="False Positive Rate"),
    #         y=alt.Y("tpr:Q", title="True Positive Rate"),
    #     )
    #     .properties(
    #         title=f"ROC Curve (AUC={roc_auc:.2f})",
    #         width=400,
    #         height=300,
    #     )
    # )

    mo.vstack(
        [
            mo.ui.altair_chart(imp_chart),
            mo.ui.altair_chart(cm_chart),
            # mo.ui.altair_chart(roc_chart), # Turned out to not be too informative as task is too easy?
            mo.md(f"""
        ## テストセット上の分類性能

        - {label_a.value}: 精度 {report[label_a.value]["precision"]:.2%}, 再現率 {report[label_a.value]["recall"]:.2%}
        - {label_b.value}: 精度 {report[label_b.value]["precision"]:.2%}, 再現率 {report[label_b.value]["recall"]:.2%}
        """),
        ]
    )
    return (term_scores,)


@app.cell
def _(
    chunk_fnames,
    data_form,
    model_form,
    run_model,
    scikit_corpus,
    term_scores,
):
    mo.stop(not run_model.value or not model_form.value)

    with mo.status.spinner("分類モデルのScatterplotを作成中…"):
        scikit_html = st.produce_scattertext_explorer(
            corpus=scikit_corpus,
            category=data_form.value["label_a"],
            category_name=data_form.value["label_a"],
            not_category_name=data_form.value["label_b"],
            scores=term_scores,
            terms_to_include=st.AutoTermSelector.get_selected_terms(
                scikit_corpus, term_scores, 4000
            ),
            metadata=chunk_fnames,
            transform=lambda freqs, _index, total: freqs / total.sum(),
            rescale_x=lambda arr: arr,  # identity
            rescale_y=lambda arr: arr,  # identity
        )
    mo.iframe(scikit_html)
    return


if __name__ == "__main__":
    app.run()