Spaces:
Sleeping
Sleeping
implement metric
Browse files- .gitignore +133 -0
- README.md +1 -1
- __main__.py +37 -0
- matching_series.py +98 -26
- requirements.txt +2 -1
.gitignore
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.vscode
|
| 2 |
+
data/
|
| 3 |
+
output/
|
| 4 |
+
|
| 5 |
+
# Byte-compiled / optimized / DLL files
|
| 6 |
+
__pycache__/
|
| 7 |
+
*.py[cod]
|
| 8 |
+
*$py.class
|
| 9 |
+
|
| 10 |
+
# C extensions
|
| 11 |
+
*.so
|
| 12 |
+
|
| 13 |
+
# Distribution / packaging
|
| 14 |
+
.Python
|
| 15 |
+
build/
|
| 16 |
+
develop-eggs/
|
| 17 |
+
dist/
|
| 18 |
+
downloads/
|
| 19 |
+
eggs/
|
| 20 |
+
.eggs/
|
| 21 |
+
lib/
|
| 22 |
+
lib64/
|
| 23 |
+
parts/
|
| 24 |
+
sdist/
|
| 25 |
+
var/
|
| 26 |
+
wheels/
|
| 27 |
+
pip-wheel-metadata/
|
| 28 |
+
share/python-wheels/
|
| 29 |
+
*.egg-info/
|
| 30 |
+
.installed.cfg
|
| 31 |
+
*.egg
|
| 32 |
+
MANIFEST
|
| 33 |
+
|
| 34 |
+
# PyInstaller
|
| 35 |
+
# Usually these files are written by a python script from a template
|
| 36 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 37 |
+
*.manifest
|
| 38 |
+
*.spec
|
| 39 |
+
|
| 40 |
+
# Installer logs
|
| 41 |
+
pip-log.txt
|
| 42 |
+
pip-delete-this-directory.txt
|
| 43 |
+
|
| 44 |
+
# Unit test / coverage reports
|
| 45 |
+
htmlcov/
|
| 46 |
+
.tox/
|
| 47 |
+
.nox/
|
| 48 |
+
.coverage
|
| 49 |
+
.coverage.*
|
| 50 |
+
.cache
|
| 51 |
+
nosetests.xml
|
| 52 |
+
coverage.xml
|
| 53 |
+
*.cover
|
| 54 |
+
*.py,cover
|
| 55 |
+
.hypothesis/
|
| 56 |
+
.pytest_cache/
|
| 57 |
+
|
| 58 |
+
# Translations
|
| 59 |
+
*.mo
|
| 60 |
+
*.pot
|
| 61 |
+
|
| 62 |
+
# Django stuff:
|
| 63 |
+
*.log
|
| 64 |
+
local_settings.py
|
| 65 |
+
db.sqlite3
|
| 66 |
+
db.sqlite3-journal
|
| 67 |
+
|
| 68 |
+
# Flask stuff:
|
| 69 |
+
instance/
|
| 70 |
+
.webassets-cache
|
| 71 |
+
|
| 72 |
+
# Scrapy stuff:
|
| 73 |
+
.scrapy
|
| 74 |
+
|
| 75 |
+
# Sphinx documentation
|
| 76 |
+
docs/_build/
|
| 77 |
+
|
| 78 |
+
# PyBuilder
|
| 79 |
+
target/
|
| 80 |
+
|
| 81 |
+
# Jupyter Notebook
|
| 82 |
+
.ipynb_checkpoints
|
| 83 |
+
|
| 84 |
+
# IPython
|
| 85 |
+
profile_default/
|
| 86 |
+
ipython_config.py
|
| 87 |
+
|
| 88 |
+
# pyenv
|
| 89 |
+
.python-version
|
| 90 |
+
|
| 91 |
+
# pipenv
|
| 92 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 93 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 94 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 95 |
+
# install all needed dependencies.
|
| 96 |
+
#Pipfile.lock
|
| 97 |
+
|
| 98 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
| 99 |
+
__pypackages__/
|
| 100 |
+
|
| 101 |
+
# Celery stuff
|
| 102 |
+
celerybeat-schedule
|
| 103 |
+
celerybeat.pid
|
| 104 |
+
|
| 105 |
+
# SageMath parsed files
|
| 106 |
+
*.sage.py
|
| 107 |
+
|
| 108 |
+
# Environments
|
| 109 |
+
.env
|
| 110 |
+
.venv
|
| 111 |
+
env/
|
| 112 |
+
venv/
|
| 113 |
+
ENV/
|
| 114 |
+
env.bak/
|
| 115 |
+
venv.bak/
|
| 116 |
+
|
| 117 |
+
# Spyder project settings
|
| 118 |
+
.spyderproject
|
| 119 |
+
.spyproject
|
| 120 |
+
|
| 121 |
+
# Rope project settings
|
| 122 |
+
.ropeproject
|
| 123 |
+
|
| 124 |
+
# mkdocs documentation
|
| 125 |
+
/site
|
| 126 |
+
|
| 127 |
+
# mypy
|
| 128 |
+
.mypy_cache/
|
| 129 |
+
.dmypy.json
|
| 130 |
+
dmypy.json
|
| 131 |
+
|
| 132 |
+
# Pyre type checker
|
| 133 |
+
.pyre/
|
README.md
CHANGED
|
@@ -3,7 +3,7 @@ title: matching_series
|
|
| 3 |
tags:
|
| 4 |
- evaluate
|
| 5 |
- metric
|
| 6 |
-
description:
|
| 7 |
sdk: gradio
|
| 8 |
sdk_version: 4.36.1
|
| 9 |
app_file: app.py
|
|
|
|
| 3 |
tags:
|
| 4 |
- evaluate
|
| 5 |
- metric
|
| 6 |
+
description: "Matching-based time-series generation metric"
|
| 7 |
sdk: gradio
|
| 8 |
sdk_version: 4.36.1
|
| 9 |
app_file: app.py
|
__main__.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
from argparse import ArgumentParser
|
| 4 |
+
|
| 5 |
+
import evaluate
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
parser = ArgumentParser(
|
| 10 |
+
description="Compute the matching series score between two time series freezed in a numpy array"
|
| 11 |
+
)
|
| 12 |
+
parser.add_argument("predictions", type=str, help="Path to the numpy array containing the predictions")
|
| 13 |
+
parser.add_argument("references", type=str, help="Path to the numpy array containing the references")
|
| 14 |
+
parser.add_argument("--output", type=str, help="Path to the output file")
|
| 15 |
+
parser.add_argument("--batch_size", type=int, help="Batch size to use for the computation")
|
| 16 |
+
args = parser.parse_args()
|
| 17 |
+
|
| 18 |
+
if not args.predictions or not args.references:
|
| 19 |
+
raise ValueError("You must provide the path to the predictions and references numpy arrays")
|
| 20 |
+
|
| 21 |
+
predictions = np.load(args.predictions)
|
| 22 |
+
references = np.load(args.references)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
logger.info(f"predictions shape: {predictions.shape}")
|
| 26 |
+
logger.info(f"references shape: {references.shape}")
|
| 27 |
+
|
| 28 |
+
import matching_series
|
| 29 |
+
|
| 30 |
+
metric = matching_series.matching_series()
|
| 31 |
+
# metric = evaluate.load("matching_series.py")
|
| 32 |
+
results = metric.compute(predictions=predictions, references=references, batch_size=args.batch_size)
|
| 33 |
+
|
| 34 |
+
print(results)
|
| 35 |
+
if args.output:
|
| 36 |
+
with open(args.output, "w") as f:
|
| 37 |
+
json.dump(results, f)
|
matching_series.py
CHANGED
|
@@ -13,9 +13,10 @@
|
|
| 13 |
# limitations under the License.
|
| 14 |
"""TODO: Add a description here."""
|
| 15 |
|
| 16 |
-
import evaluate
|
| 17 |
import datasets
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# TODO: Add BibTeX citation
|
| 21 |
_CITATION = """\
|
|
@@ -36,26 +37,21 @@ This new module is designed to solve this great ML task and is crafted with a lo
|
|
| 36 |
_KWARGS_DESCRIPTION = """
|
| 37 |
Calculates how good are predictions given some references, using certain scores
|
| 38 |
Args:
|
| 39 |
-
predictions: list of
|
| 40 |
-
|
| 41 |
-
references: list of reference
|
| 42 |
-
|
| 43 |
Returns:
|
| 44 |
-
accuracy: description of the first score,
|
| 45 |
-
another_score: description of the second score,
|
| 46 |
Examples:
|
| 47 |
Examples should be written in doctest format, and should illustrate how
|
| 48 |
to use the function.
|
| 49 |
|
| 50 |
-
>>> my_new_module = evaluate.load("
|
| 51 |
-
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
| 52 |
>>> print(results)
|
| 53 |
-
{'
|
| 54 |
"""
|
| 55 |
|
| 56 |
-
# TODO: Define external resources urls if needed
|
| 57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
| 58 |
-
|
| 59 |
|
| 60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 61 |
class matching_series(evaluate.Metric):
|
|
@@ -70,26 +66,102 @@ class matching_series(evaluate.Metric):
|
|
| 70 |
citation=_CITATION,
|
| 71 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 72 |
# This defines the format of each prediction and reference
|
| 73 |
-
features=datasets.Features(
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
# Homepage of the module for documentation
|
| 78 |
homepage="http://module.homepage",
|
| 79 |
# Additional links to the codebase or references
|
| 80 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
| 81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
| 82 |
)
|
| 83 |
|
| 84 |
def _download_and_prepare(self, dl_manager):
|
| 85 |
"""Optional: download external resources useful to compute the scores"""
|
| 86 |
-
# TODO: Download external resources if needed
|
| 87 |
pass
|
| 88 |
|
| 89 |
-
def _compute(self, predictions, references):
|
| 90 |
-
"""
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
return {
|
| 94 |
-
"
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# limitations under the License.
|
| 14 |
"""TODO: Add a description here."""
|
| 15 |
|
|
|
|
| 16 |
import datasets
|
| 17 |
+
import evaluate
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
|
| 21 |
# TODO: Add BibTeX citation
|
| 22 |
_CITATION = """\
|
|
|
|
| 37 |
_KWARGS_DESCRIPTION = """
|
| 38 |
Calculates how good are predictions given some references, using certain scores
|
| 39 |
Args:
|
| 40 |
+
predictions: list of generated time series.
|
| 41 |
+
shape: (num_generation, num_timesteps, num_features)
|
| 42 |
+
references: list of reference
|
| 43 |
+
shape: (num_reference, num_timesteps, num_features)
|
| 44 |
Returns:
|
|
|
|
|
|
|
| 45 |
Examples:
|
| 46 |
Examples should be written in doctest format, and should illustrate how
|
| 47 |
to use the function.
|
| 48 |
|
| 49 |
+
>>> my_new_module = evaluate.load("bowdbeg/matching_series")
|
| 50 |
+
>>> results = my_new_module.compute(references=[[[0.0, 1.0]]], predictions=[[[0.0, 1.0]]])
|
| 51 |
>>> print(results)
|
| 52 |
+
{'matchin': 1.0}
|
| 53 |
"""
|
| 54 |
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 57 |
class matching_series(evaluate.Metric):
|
|
|
|
| 66 |
citation=_CITATION,
|
| 67 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 68 |
# This defines the format of each prediction and reference
|
| 69 |
+
features=datasets.Features(
|
| 70 |
+
{
|
| 71 |
+
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
|
| 72 |
+
"references": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
|
| 73 |
+
}
|
| 74 |
+
),
|
| 75 |
# Homepage of the module for documentation
|
| 76 |
homepage="http://module.homepage",
|
| 77 |
# Additional links to the codebase or references
|
| 78 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
| 79 |
+
reference_urls=["http://path.to.reference.url/new_module"],
|
| 80 |
)
|
| 81 |
|
| 82 |
def _download_and_prepare(self, dl_manager):
|
| 83 |
"""Optional: download external resources useful to compute the scores"""
|
|
|
|
| 84 |
pass
|
| 85 |
|
| 86 |
+
def _compute(self, predictions: list | np.ndarray, references: list | np.ndarray, batch_size: None | int = None):
|
| 87 |
+
"""
|
| 88 |
+
Compute the scores of the module given the predictions and references
|
| 89 |
+
Args:
|
| 90 |
+
predictions: list of generated time series.
|
| 91 |
+
shape: (num_generation, num_timesteps, num_features)
|
| 92 |
+
references: list of reference
|
| 93 |
+
shape: (num_reference, num_timesteps, num_features)
|
| 94 |
+
batch_size: batch size to use for the computation. If None, the whole dataset is processed at once.
|
| 95 |
+
Returns:
|
| 96 |
+
"""
|
| 97 |
+
predictions = np.array(predictions)
|
| 98 |
+
references = np.array(references)
|
| 99 |
+
if predictions.shape[1:] != references.shape[1:]:
|
| 100 |
+
raise ValueError(
|
| 101 |
+
"The number of features in the predictions and references should be the same. predictions: {}, references: {}".format(
|
| 102 |
+
predictions.shape[1:], references.shape[1:]
|
| 103 |
+
)
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# at first, convert the inputs to numpy arrays
|
| 107 |
+
|
| 108 |
+
# MSE between predictions and references for all example combinations for each features
|
| 109 |
+
# shape: (num_generation, num_reference, num_features)
|
| 110 |
+
if batch_size is not None:
|
| 111 |
+
mse = np.zeros((len(predictions), len(references), predictions.shape[-1]))
|
| 112 |
+
# iterate over the predictions and references in batches
|
| 113 |
+
for i in range(0, len(predictions) + batch_size, batch_size):
|
| 114 |
+
for j in range(0, len(references) + batch_size, batch_size):
|
| 115 |
+
mse[i : i + batch_size, j : j + batch_size] = np.mean(
|
| 116 |
+
(predictions[i : i + batch_size, None] - references[None, j : j + batch_size]) ** 2, axis=-2
|
| 117 |
+
)
|
| 118 |
+
else:
|
| 119 |
+
mse = np.mean((predictions[:, None] - references) ** 2, axis=1)
|
| 120 |
+
|
| 121 |
+
index_mse = mse.diagonal(axis1=0, axis2=1).mean()
|
| 122 |
+
|
| 123 |
+
# matching scores
|
| 124 |
+
mse_mean = mse.mean(axis=-1)
|
| 125 |
+
# best match for each generated time series
|
| 126 |
+
# shape: (num_generation,)
|
| 127 |
+
best_match = np.argmin(mse_mean, axis=-1)
|
| 128 |
+
|
| 129 |
+
# matching mse
|
| 130 |
+
# shape: (num_generation,)
|
| 131 |
+
matching_mse = mse_mean[np.arange(len(best_match)), best_match].mean()
|
| 132 |
+
|
| 133 |
+
# best match for each reference time series
|
| 134 |
+
# shape: (num_reference,)
|
| 135 |
+
best_match_inv = np.argmin(mse_mean, axis=0)
|
| 136 |
+
covered_mse = mse_mean[best_match_inv, np.arange(len(best_match_inv))].mean()
|
| 137 |
+
|
| 138 |
+
harmonic_mean = 2 / (1 / matching_mse + 1 / covered_mse)
|
| 139 |
+
|
| 140 |
+
# take matching for each feature and compute metrics for them
|
| 141 |
+
matching_mse_features = []
|
| 142 |
+
covered_mse_features = []
|
| 143 |
+
harmonic_mean_features = []
|
| 144 |
+
index_mse_features = []
|
| 145 |
+
for f in range(predictions.shape[-1]):
|
| 146 |
+
mse_f = mse[:, :, f]
|
| 147 |
+
index_mse_f = mse_f.diagonal(axis1=0, axis2=1).mean()
|
| 148 |
+
best_match_f = np.argmin(mse_f, axis=-1)
|
| 149 |
+
matching_mse_f = mse_f[np.arange(len(best_match_f)), best_match_f].mean()
|
| 150 |
+
best_match_inv_f = np.argmin(mse_f, axis=0)
|
| 151 |
+
covered_mse_f = mse_f[best_match_inv_f, np.arange(len(best_match_inv_f))].mean()
|
| 152 |
+
harmonic_mean_f = 2 / (1 / matching_mse_f + 1 / covered_mse_f)
|
| 153 |
+
matching_mse_features.append(matching_mse_f)
|
| 154 |
+
covered_mse_features.append(covered_mse_f)
|
| 155 |
+
harmonic_mean_features.append(harmonic_mean_f)
|
| 156 |
+
index_mse_features.append(index_mse_f)
|
| 157 |
+
|
| 158 |
return {
|
| 159 |
+
"matching_mse": matching_mse,
|
| 160 |
+
"harmonic_mean": harmonic_mean,
|
| 161 |
+
"covered_mse": covered_mse,
|
| 162 |
+
"index_mse": index_mse,
|
| 163 |
+
"matching_mse_features": matching_mse_features,
|
| 164 |
+
"harmonic_mean_features": harmonic_mean_features,
|
| 165 |
+
"covered_mse_features": covered_mse_features,
|
| 166 |
+
"index_mse_features": index_mse_features,
|
| 167 |
+
}
|
requirements.txt
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
-
git+https://github.com/huggingface/evaluate@main
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/evaluate@main
|
| 2 |
+
numpy
|