Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- shared/README.md +1 -0
- shared/scripts/upload_data.py +109 -0
- shared/utils/__init__.py +12 -0
- shared/utils/__pycache__/__init__.cpython-39.pyc +0 -0
- shared/utils/__pycache__/audio.cpython-39.pyc +0 -0
- shared/utils/__pycache__/av.cpython-39.pyc +0 -0
- shared/utils/__pycache__/image.cpython-39.pyc +0 -0
- shared/utils/__pycache__/io.cpython-39.pyc +0 -0
- shared/utils/__pycache__/keypoint_matching.cpython-39.pyc +0 -0
- shared/utils/__pycache__/log.cpython-39.pyc +0 -0
- shared/utils/__pycache__/metrics.cpython-39.pyc +0 -0
- shared/utils/__pycache__/misc.cpython-39.pyc +0 -0
- shared/utils/__pycache__/pandas_utils.cpython-39.pyc +0 -0
- shared/utils/__pycache__/paths.cpython-39.pyc +0 -0
- shared/utils/__pycache__/physics.cpython-39.pyc +0 -0
- shared/utils/__pycache__/visualize.cpython-39.pyc +0 -0
- shared/utils/audio.py +224 -0
- shared/utils/av.py +93 -0
- shared/utils/classification.py +47 -0
- shared/utils/epic.py +15 -0
- shared/utils/image.py +81 -0
- shared/utils/io.py +151 -0
- shared/utils/keypoint_matching.py +330 -0
- shared/utils/log.py +72 -0
- shared/utils/metrics.py +458 -0
- shared/utils/misc.py +116 -0
- shared/utils/pandas_utils.py +117 -0
- shared/utils/paths.py +35 -0
- shared/utils/physics.py +341 -0
- shared/utils/text_basic.py +44 -0
- shared/utils/visualize.py +2208 -0
shared/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
This folder shall have code utilities shared across different tasks.
|
shared/scripts/upload_data.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Uploads dataset to huggingface datasets."""
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
from huggingface_hub import HfApi
|
| 9 |
+
import shared.utils as su
|
| 10 |
+
from sound_of_water.data.csv_loader import (
|
| 11 |
+
load_csv_sound_of_water,
|
| 12 |
+
configure_paths_sound_of_water,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
if __name__ == "__main__":
|
| 17 |
+
api = HfApi()
|
| 18 |
+
|
| 19 |
+
data_root = "/work/piyush/from_nfs2/datasets/SoundOfWater"
|
| 20 |
+
repo_id = "bpiyush/sound-of-water"
|
| 21 |
+
|
| 22 |
+
save_splits = False
|
| 23 |
+
if save_splits:
|
| 24 |
+
# Load CSV
|
| 25 |
+
paths = configure_paths_sound_of_water(data_root)
|
| 26 |
+
df = load_csv_sound_of_water(paths)
|
| 27 |
+
del df["video_clip_path"]
|
| 28 |
+
del df["audio_clip_path"]
|
| 29 |
+
del df["box_path"]
|
| 30 |
+
del df["mask_path"]
|
| 31 |
+
|
| 32 |
+
# Splits
|
| 33 |
+
train_ids = su.io.load_txt(os.path.join(data_root, "splits/train.txt"))
|
| 34 |
+
df_train = df[df.item_id.isin(train_ids)]
|
| 35 |
+
df_train["file_name"] = df_train["item_id"].apply(lambda x: f"videos/{x}.mp4")
|
| 36 |
+
df_train.to_csv(os.path.join(data_root, "splits/train.csv"), index=False)
|
| 37 |
+
print(" [:::] Train split saved.")
|
| 38 |
+
|
| 39 |
+
test_I_ids = su.io.load_txt(os.path.join(data_root, "splits/test_I.txt"))
|
| 40 |
+
df_test_I = df[df.item_id.isin(test_I_ids)]
|
| 41 |
+
df_test_I["file_name"] = df_test_I["item_id"].apply(lambda x: f"videos/{x}.mp4")
|
| 42 |
+
df_test_I.to_csv(os.path.join(data_root, "splits/test_I.csv"), index=False)
|
| 43 |
+
print(" [:::] Test I split saved.")
|
| 44 |
+
|
| 45 |
+
test_II_ids = su.io.load_txt(os.path.join(data_root, "splits/test_II.txt"))
|
| 46 |
+
df_test_II = df[df.item_id.isin(test_II_ids)]
|
| 47 |
+
df_test_II["file_name"] = df_test_II["item_id"].apply(lambda x: f"videos/{x}.mp4")
|
| 48 |
+
df_test_II.to_csv(os.path.join(data_root, "splits/test_II.csv"), index=False)
|
| 49 |
+
print(" [:::] Test II split saved.")
|
| 50 |
+
|
| 51 |
+
test_III_ids = su.io.load_txt(os.path.join(data_root, "splits/test_III.txt"))
|
| 52 |
+
df_test_III = df[df.item_id.isin(test_III_ids)]
|
| 53 |
+
df_test_III["file_name"] = df_test_III["item_id"].apply(lambda x: f"videos/{x}.mp4")
|
| 54 |
+
df_test_III.to_csv(os.path.join(data_root, "splits/test_III.csv"), index=False)
|
| 55 |
+
print(" [:::] Test III split saved.")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
create_splits = False
|
| 59 |
+
if create_splits:
|
| 60 |
+
train_ids = su.io.load_txt(os.path.join(data_root, "splits/train.txt"))
|
| 61 |
+
train_ids = np.unique(train_ids)
|
| 62 |
+
|
| 63 |
+
test_I_ids = su.io.load_txt(os.path.join(data_root, "splits/test_I.txt"))
|
| 64 |
+
test_I_ids = np.unique(test_I_ids)
|
| 65 |
+
|
| 66 |
+
other_ids = np.array(
|
| 67 |
+
list(set(df.item_id.unique()) - set(train_ids) - set(test_I_ids))
|
| 68 |
+
)
|
| 69 |
+
sub_df = df[~df.item_id.isin(set(train_ids) | set(test_I_ids))]
|
| 70 |
+
X = sub_df[
|
| 71 |
+
(sub_df.visibility != "transparent") & (sub_df["shape"].isin(["cylindrical", "semiconical"]))
|
| 72 |
+
]
|
| 73 |
+
test_II_ids = list(X.item_id.unique())
|
| 74 |
+
assert set(test_II_ids).intersection(set(train_ids)) == set()
|
| 75 |
+
assert set(test_II_ids).intersection(set(test_I_ids)) == set()
|
| 76 |
+
su.io.save_txt(test_II_ids, os.path.join(data_root, "splits/test_II.txt"))
|
| 77 |
+
|
| 78 |
+
X = sub_df[
|
| 79 |
+
(sub_df.visibility.isin(["transparent", "opaque"])) & \
|
| 80 |
+
(sub_df["shape"].isin(["cylindrical", "semiconical", "bottleneck"]))
|
| 81 |
+
]
|
| 82 |
+
test_III_ids = list(X.item_id.unique())
|
| 83 |
+
assert set(test_III_ids).intersection(set(train_ids)) == set()
|
| 84 |
+
assert set(test_III_ids).intersection(set(test_I_ids)) == set()
|
| 85 |
+
assert set(test_III_ids).intersection(set(test_II_ids)) != set()
|
| 86 |
+
su.io.save_txt(test_III_ids, os.path.join(data_root, "splits/test_III.txt"))
|
| 87 |
+
|
| 88 |
+
upload_file = True
|
| 89 |
+
if upload_file:
|
| 90 |
+
file = "README.md"
|
| 91 |
+
print(f" [:::] Uploading file: {file}")
|
| 92 |
+
api.upload_file(
|
| 93 |
+
path_or_fileobj=os.path.join(data_root, file),
|
| 94 |
+
path_in_repo=file,
|
| 95 |
+
repo_id=repo_id,
|
| 96 |
+
repo_type="dataset",
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
upload_folder = False
|
| 100 |
+
if upload_folder:
|
| 101 |
+
# Upload splits folder
|
| 102 |
+
foldername = "annotations"
|
| 103 |
+
print(f" [:::] Uploading folder: {foldername}")
|
| 104 |
+
api.upload_folder(
|
| 105 |
+
folder_path=os.path.join(data_root, foldername),
|
| 106 |
+
path_in_repo=foldername, # Upload to a specific folder
|
| 107 |
+
repo_id=repo_id,
|
| 108 |
+
repo_type="dataset",
|
| 109 |
+
)
|
shared/utils/__init__.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import shared.utils.paths as paths
|
| 2 |
+
import shared.utils.log as log
|
| 3 |
+
import shared.utils.io as io
|
| 4 |
+
import shared.utils.audio as audio
|
| 5 |
+
import shared.utils.image as image
|
| 6 |
+
import shared.utils.av as av
|
| 7 |
+
import shared.utils.pandas_utils as pd_utils
|
| 8 |
+
import shared.utils.visualize as visualize
|
| 9 |
+
import shared.utils.metrics as metrics
|
| 10 |
+
import shared.utils.misc as misc
|
| 11 |
+
import shared.utils.keypoint_matching as keypoint_matching
|
| 12 |
+
import shared.utils.physics as physics
|
shared/utils/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (768 Bytes). View file
|
|
|
shared/utils/__pycache__/audio.cpython-39.pyc
ADDED
|
Binary file (6.01 kB). View file
|
|
|
shared/utils/__pycache__/av.cpython-39.pyc
ADDED
|
Binary file (2.72 kB). View file
|
|
|
shared/utils/__pycache__/image.cpython-39.pyc
ADDED
|
Binary file (1.96 kB). View file
|
|
|
shared/utils/__pycache__/io.cpython-39.pyc
ADDED
|
Binary file (4.76 kB). View file
|
|
|
shared/utils/__pycache__/keypoint_matching.cpython-39.pyc
ADDED
|
Binary file (10 kB). View file
|
|
|
shared/utils/__pycache__/log.cpython-39.pyc
ADDED
|
Binary file (2.15 kB). View file
|
|
|
shared/utils/__pycache__/metrics.cpython-39.pyc
ADDED
|
Binary file (10.6 kB). View file
|
|
|
shared/utils/__pycache__/misc.cpython-39.pyc
ADDED
|
Binary file (4.28 kB). View file
|
|
|
shared/utils/__pycache__/pandas_utils.cpython-39.pyc
ADDED
|
Binary file (3.2 kB). View file
|
|
|
shared/utils/__pycache__/paths.cpython-39.pyc
ADDED
|
Binary file (918 Bytes). View file
|
|
|
shared/utils/__pycache__/physics.cpython-39.pyc
ADDED
|
Binary file (7.17 kB). View file
|
|
|
shared/utils/__pycache__/visualize.cpython-39.pyc
ADDED
|
Binary file (54.5 kB). View file
|
|
|
shared/utils/audio.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Audio utils"""
|
| 2 |
+
import librosa
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def load_audio(audio_path: str, sr: int = None, max_duration: int = 10., start: int = 0, stop: int = None):
|
| 8 |
+
"""Loads audio and pads/trims it to max_duration"""
|
| 9 |
+
data, sr = librosa.load(audio_path, sr=sr)
|
| 10 |
+
|
| 11 |
+
if stop is not None:
|
| 12 |
+
start = int(start * sr)
|
| 13 |
+
stop = int(stop * sr)
|
| 14 |
+
data = data[start:stop]
|
| 15 |
+
|
| 16 |
+
# Convert to mono
|
| 17 |
+
if len(data.shape) > 1:
|
| 18 |
+
data = np.mean(data, axis=1)
|
| 19 |
+
|
| 20 |
+
n_frames = int(max_duration * sr)
|
| 21 |
+
if len(data) > n_frames:
|
| 22 |
+
data = data[:n_frames]
|
| 23 |
+
elif len(data) < n_frames:
|
| 24 |
+
data = np.pad(data, (0, n_frames - len(data)), "constant")
|
| 25 |
+
return data, sr
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# def compute_spectrogram(data: np.ndarray, sr: int):
|
| 29 |
+
# D = librosa.stft(data) # STFT of y
|
| 30 |
+
# S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
| 31 |
+
# return S_db
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def compute_spec_freq_mean(S_db: np.ndarray, eps=1e-5):
|
| 35 |
+
# Compute mean of spectrogram over frequency axis
|
| 36 |
+
S_db_normalized = (S_db - S_db.mean(axis=1)[:, None]) / (S_db.std(axis=1)[:, None] + eps)
|
| 37 |
+
S_db_over_time = S_db_normalized.sum(axis=0)
|
| 38 |
+
return S_db_over_time
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def process_audiofile(audio_path, functions=["load_audio", "compute_spectrogram", "compute_spec_freq_mean"]):
|
| 42 |
+
"""Processes audio file with a list of functions"""
|
| 43 |
+
data, sr = load_audio(audio_path)
|
| 44 |
+
for function in functions:
|
| 45 |
+
if function == "load_audio":
|
| 46 |
+
pass
|
| 47 |
+
elif function == "compute_spectrogram":
|
| 48 |
+
data = compute_spectrogram(data, sr)
|
| 49 |
+
elif function == "compute_spec_freq_mean":
|
| 50 |
+
data = compute_spec_freq_mean(data)
|
| 51 |
+
else:
|
| 52 |
+
raise ValueError(f"Unknown function {function}")
|
| 53 |
+
return data
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
"""PyDub's silence detection is based on the energy of the audio signal."""
|
| 58 |
+
import numpy as np
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def sigmoid(x):
|
| 62 |
+
return 1 / (1 + np.exp(-x))
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class SilenceDetector:
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def __init__(self, silence_thresh=-36) -> None:
|
| 69 |
+
self.silence_thresh = silence_thresh
|
| 70 |
+
|
| 71 |
+
def __call__(self, audio_path: str, start=None, end=None):
|
| 72 |
+
|
| 73 |
+
import pydub
|
| 74 |
+
from pydub.utils import db_to_float
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
waveform = pydub.AudioSegment.from_file(audio_path)
|
| 78 |
+
except:
|
| 79 |
+
print("Error loading audio file: ", audio_path)
|
| 80 |
+
return 100.0
|
| 81 |
+
|
| 82 |
+
start_ms = int(start * 1000) if start else 0
|
| 83 |
+
end_ms = int(end * 1000) if end else len(waveform)
|
| 84 |
+
waveform = waveform[start_ms:end_ms]
|
| 85 |
+
|
| 86 |
+
# convert silence threshold to a float value (so we can compare it to rms)
|
| 87 |
+
silence_thresh = db_to_float(self.silence_thresh) * waveform.max_possible_amplitude
|
| 88 |
+
|
| 89 |
+
if waveform.rms == 0:
|
| 90 |
+
return 100.0
|
| 91 |
+
|
| 92 |
+
silence_prob = sigmoid((silence_thresh - waveform.rms) / waveform.rms)
|
| 93 |
+
|
| 94 |
+
# return waveform.rms <= silence_thresh
|
| 95 |
+
return np.round(100 * silence_prob, 2)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def frequency_bin_to_value(bin_index, sr, n_fft):
|
| 99 |
+
return int(bin_index * sr / n_fft)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def time_bin_to_value(bin_index, hop_length, sr):
|
| 103 |
+
return (bin_index) * (hop_length / sr)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def add_time_annotations(ax, nt_bins, hop_length, sr, skip=50):
|
| 107 |
+
# Show time (s) values on the x-axis
|
| 108 |
+
t_bins = np.arange(nt_bins)
|
| 109 |
+
t_vals = np.round(np.array([time_bin_to_value(tb, hop_length, sr) for tb in t_bins]), 1)
|
| 110 |
+
try:
|
| 111 |
+
ax.set_xticks(t_bins[::skip], t_vals[::skip])
|
| 112 |
+
except:
|
| 113 |
+
pass
|
| 114 |
+
ax.set_xlabel("Time (s)")
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def add_freq_annotations(ax, nf_bins, sr, n_fft, skip=50):
|
| 118 |
+
f_bins = np.arange(nf_bins)
|
| 119 |
+
f_vals = np.array([frequency_bin_to_value(fb, sr, n_fft) for fb in f_bins])
|
| 120 |
+
try:
|
| 121 |
+
ax.set_yticks(f_bins[::skip], f_vals[::skip])
|
| 122 |
+
except:
|
| 123 |
+
pass
|
| 124 |
+
# ax.set_yticks(f_bins[::skip])
|
| 125 |
+
# ax.set_yticklabels(f_vals[::skip])
|
| 126 |
+
ax.set_ylabel("Frequency (Hz)")
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def show_single_spectrogram(
|
| 130 |
+
spec,
|
| 131 |
+
sr,
|
| 132 |
+
n_fft,
|
| 133 |
+
hop_length,
|
| 134 |
+
ax=None,
|
| 135 |
+
fig=None,
|
| 136 |
+
figsize=(10, 2),
|
| 137 |
+
cmap="viridis",
|
| 138 |
+
colorbar=True,
|
| 139 |
+
show=True,
|
| 140 |
+
format='%+2.0f dB',
|
| 141 |
+
xlabel='Time (s)',
|
| 142 |
+
ylabel="Frequency (Hz)",
|
| 143 |
+
title=None,
|
| 144 |
+
show_dom_freq=False,
|
| 145 |
+
):
|
| 146 |
+
|
| 147 |
+
if ax is None:
|
| 148 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
| 149 |
+
axim = ax.imshow(spec, origin="lower", cmap=cmap)
|
| 150 |
+
|
| 151 |
+
# Show frequency (Hz) values on y-axis
|
| 152 |
+
nf_bins, nt_bins = spec.shape
|
| 153 |
+
|
| 154 |
+
if "frequency" in ylabel.lower():
|
| 155 |
+
# Add frequency annotation
|
| 156 |
+
add_freq_annotations(ax, nf_bins, sr, n_fft)
|
| 157 |
+
|
| 158 |
+
# Add time annotation
|
| 159 |
+
add_time_annotations(ax, nt_bins, hop_length, sr)
|
| 160 |
+
|
| 161 |
+
ax.set_title(title)
|
| 162 |
+
ax.set_xlabel(xlabel)
|
| 163 |
+
ax.set_ylabel(ylabel)
|
| 164 |
+
|
| 165 |
+
if colorbar:
|
| 166 |
+
fig.colorbar(axim, ax=ax, orientation='vertical', fraction=0.01, format=format)
|
| 167 |
+
|
| 168 |
+
if show_dom_freq:
|
| 169 |
+
fmax = spec.argmax(axis=0)
|
| 170 |
+
ax.scatter(np.arange(spec.shape[1]), fmax, color="white", s=0.2)
|
| 171 |
+
|
| 172 |
+
if show:
|
| 173 |
+
plt.show()
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def compute_spectrogram(y, n_fft, hop_length, margin, n_mels=None):
|
| 177 |
+
# STFT
|
| 178 |
+
D = librosa.stft(y, n_fft=n_fft, hop_length=hop_length)
|
| 179 |
+
|
| 180 |
+
# Run HPSS
|
| 181 |
+
S, _ = librosa.decompose.hpss(D, margin=margin)
|
| 182 |
+
|
| 183 |
+
# DB
|
| 184 |
+
S = librosa.amplitude_to_db(np.abs(S), ref=np.max)
|
| 185 |
+
|
| 186 |
+
if n_mels is not None:
|
| 187 |
+
S = librosa.feature.melspectrogram(S=S, n_mels=n_mels)
|
| 188 |
+
|
| 189 |
+
return S
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def show_spectrogram(S, sr, n_fft=512, hop_length=256, figsize=(10, 3), n_mels=None, ax=None, show=True):
|
| 193 |
+
if ax is None:
|
| 194 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
| 195 |
+
y_axis = "mel" if n_mels is not None else "linear"
|
| 196 |
+
librosa.display.specshow(
|
| 197 |
+
S,
|
| 198 |
+
sr=sr,
|
| 199 |
+
hop_length=hop_length,
|
| 200 |
+
n_fft=n_fft,
|
| 201 |
+
y_axis=y_axis,
|
| 202 |
+
x_axis='time',
|
| 203 |
+
ax=ax,
|
| 204 |
+
)
|
| 205 |
+
ax.set_title("LogSpectrogram" if n_mels is None else "LogMelSpectrogram")
|
| 206 |
+
if show:
|
| 207 |
+
plt.show()
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def show_frame_and_spectrogram(frame, S, sr, figsize=(12, 4), show=True, axes=None, **spec_args):
|
| 211 |
+
if axes is None:
|
| 212 |
+
fig, axes = plt.subplots(1, 2, figsize=figsize, gridspec_kw={"width_ratios": [0.2, 0.8]})
|
| 213 |
+
ax = axes[0]
|
| 214 |
+
ax.imshow(frame)
|
| 215 |
+
ax.set_xticks([])
|
| 216 |
+
ax.set_yticks([])
|
| 217 |
+
|
| 218 |
+
ax = axes[1]
|
| 219 |
+
show_spectrogram(S=S, sr=sr, ax=ax, show=False, **spec_args)
|
| 220 |
+
|
| 221 |
+
plt.tight_layout()
|
| 222 |
+
|
| 223 |
+
if show:
|
| 224 |
+
plt.show()
|
shared/utils/av.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Audio-visual helper functions."""
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def save_video_with_audio(video, audio, output_path):
|
| 8 |
+
"""
|
| 9 |
+
Saves a video file with audio.
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
video (np.ndarray): Video frames.
|
| 13 |
+
audio (np.ndarray): Audio samples.
|
| 14 |
+
output_path (str): Output path.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
# check the correct shape and format for audio
|
| 18 |
+
assert isinstance(audio, np.ndarray)
|
| 19 |
+
assert len(audio.shape) == 2
|
| 20 |
+
assert audio.shape[1] in [1, 2]
|
| 21 |
+
|
| 22 |
+
# create video writer
|
| 23 |
+
video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), 30, (video.shape[2], video.shape[1]))
|
| 24 |
+
# write the image frames to the video
|
| 25 |
+
for frame in video:
|
| 26 |
+
video_writer.write(frame)
|
| 27 |
+
# add the audio data to the video
|
| 28 |
+
video_writer.write(audio)
|
| 29 |
+
# release the VideoWriter object
|
| 30 |
+
video_writer.release()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def save_video_from_image_sequence_and_audio(sequence, audio, save_path, video_fps=15, audio_fps=22100):
|
| 34 |
+
from moviepy.editor import VideoClip, AudioClip, ImageSequenceClip
|
| 35 |
+
from moviepy.audio.AudioClip import AudioArrayClip
|
| 36 |
+
|
| 37 |
+
assert isinstance(sequence, list) and isinstance(audio, (np.ndarray, torch.Tensor))
|
| 38 |
+
assert len(audio.shape) == 2 and audio.shape[1] in [1, 2]
|
| 39 |
+
|
| 40 |
+
video_duration = len(sequence) / video_fps
|
| 41 |
+
audio_duration = len(audio) / audio_fps
|
| 42 |
+
# # print(f"Video duration: {video_duration:.2f}s, audio duration: {audio_duration:.2f}s")
|
| 43 |
+
# assert video_duration == audio_duration, \
|
| 44 |
+
# f"Video duration ({video_duration}) and audio duration ({audio_duration}) do not match."
|
| 45 |
+
|
| 46 |
+
video_clip = ImageSequenceClip(sequence, fps=video_fps)
|
| 47 |
+
audio_clip = AudioArrayClip(audio, fps=audio_fps)
|
| 48 |
+
video_clip = video_clip.set_audio(audio_clip)
|
| 49 |
+
# video_clip.write_videofile(save_path, verbose=True, logger=None, fps=video_fps, audio_fps=audio_fps)
|
| 50 |
+
video_clip.write_videofile(save_path, verbose=False, logger=None)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
import cv2, os
|
| 54 |
+
import argparse
|
| 55 |
+
import numpy as np
|
| 56 |
+
from glob import glob
|
| 57 |
+
import librosa
|
| 58 |
+
import subprocess
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def generate_video(args):
|
| 62 |
+
|
| 63 |
+
frames = glob('{}/*.png'.format(args.input_dir))
|
| 64 |
+
print("Total frames = ", len(frames))
|
| 65 |
+
|
| 66 |
+
frames.sort(key = lambda x: int(x.split("/")[-1].split(".")[0]))
|
| 67 |
+
|
| 68 |
+
img = cv2.imread(frames[0])
|
| 69 |
+
print(img.shape)
|
| 70 |
+
fname = 'inference.avi'
|
| 71 |
+
video = cv2.VideoWriter(
|
| 72 |
+
fname, cv2.VideoWriter_fourcc(*'DIVX'), args.fps, (img.shape[1], img.shape[0]),
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
for i in range(len(frames)):
|
| 76 |
+
img = cv2.imread(frames[i])
|
| 77 |
+
video.write(img)
|
| 78 |
+
|
| 79 |
+
video.release()
|
| 80 |
+
|
| 81 |
+
output_file_name = args.output_video
|
| 82 |
+
|
| 83 |
+
no_sound_video = output_file_name + '_nosound.mp4'
|
| 84 |
+
subprocess.call('ffmpeg -hide_banner -loglevel panic -i %s -c copy -an -strict -2 %s' % (fname, no_sound_video), shell=True)
|
| 85 |
+
|
| 86 |
+
if args.audio_file is not None:
|
| 87 |
+
video_output = output_file_name + '.mp4'
|
| 88 |
+
subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -i %s -strict -2 -q:v 1 %s' %
|
| 89 |
+
(args.audio_file, no_sound_video, video_output), shell=True)
|
| 90 |
+
|
| 91 |
+
os.remove(no_sound_video)
|
| 92 |
+
|
| 93 |
+
os.remove(fname)
|
shared/utils/classification.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Helper functions for classification tasks."""
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def plot_metric_curve(
|
| 8 |
+
xvalues, yvalues, thresholds, title=None,
|
| 9 |
+
figsize=(8, 7), show_thresholds=True, show_legend=True,
|
| 10 |
+
ylabel='X', xlabel='Y', ax=None, text_delta=0.01,
|
| 11 |
+
label="Metric Curve", color="royalblue", show=False,
|
| 12 |
+
fill=None,
|
| 13 |
+
):
|
| 14 |
+
"""Plot a metric curve, e.g., PR curve or ROC curve."""
|
| 15 |
+
|
| 16 |
+
if ax is None:
|
| 17 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
| 18 |
+
|
| 19 |
+
ax.grid(alpha=0.3)
|
| 20 |
+
ax.set_title(title)
|
| 21 |
+
ax.set_ylabel(ylabel)
|
| 22 |
+
ax.set_xlabel(xlabel)
|
| 23 |
+
|
| 24 |
+
ax.plot(xvalues, yvalues, marker='o', label=label, color=color)
|
| 25 |
+
ax.set_xlim(-0.08, 1.08)
|
| 26 |
+
ax.set_ylim(-0.08, 1.08)
|
| 27 |
+
|
| 28 |
+
if fill is not None:
|
| 29 |
+
yticks = ax.get_yticks()
|
| 30 |
+
ax.fill_between(xvalues, yvalues, "", alpha=0.08, color=color)
|
| 31 |
+
# Add `fill` inside the curve
|
| 32 |
+
# Find a single (x, y) s.t. it is inside the curve
|
| 33 |
+
ax.text(0.4, 0.5, fill, color=color)
|
| 34 |
+
ax.set_yticks(yticks)
|
| 35 |
+
ax.set_yticklabels([f"{y:.1f}" for y in yticks])
|
| 36 |
+
ax.set_ylim(-0.08, 1.08)
|
| 37 |
+
|
| 38 |
+
# Show thresholds
|
| 39 |
+
if show_thresholds:
|
| 40 |
+
for x, y, t in zip(xvalues, yvalues, thresholds):
|
| 41 |
+
ax.text(x + text_delta, y + text_delta, np.round(t, 2), color=color, alpha=0.5)
|
| 42 |
+
|
| 43 |
+
if show_legend:
|
| 44 |
+
ax.legend()
|
| 45 |
+
|
| 46 |
+
if show:
|
| 47 |
+
plt.show()
|
shared/utils/epic.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utils specific for EPIC data."""
|
| 2 |
+
import datetime
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def timestamp_to_seconds(timestamp: str):
|
| 6 |
+
# Parse the timestamp string into a datetime object
|
| 7 |
+
time_obj = datetime.datetime.strptime(timestamp, '%H:%M:%S.%f')
|
| 8 |
+
|
| 9 |
+
# Calculate the total number of seconds using the timedelta object
|
| 10 |
+
total_seconds = time_obj.time().second \
|
| 11 |
+
+ time_obj.time().minute * 60 \
|
| 12 |
+
+ time_obj.time().hour * 3600 \
|
| 13 |
+
+ time_obj.time().microsecond / 1000000
|
| 14 |
+
|
| 15 |
+
return total_seconds
|
shared/utils/image.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Image operations."""
|
| 2 |
+
from copy import deepcopy
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def center_crop(im: Image):
|
| 8 |
+
width, height = im.size
|
| 9 |
+
new_width = width if width < height else height
|
| 10 |
+
new_height = height if height < width else width
|
| 11 |
+
|
| 12 |
+
left = (width - new_width)/2
|
| 13 |
+
top = (height - new_height)/2
|
| 14 |
+
right = (width + new_width)/2
|
| 15 |
+
bottom = (height + new_height)/2
|
| 16 |
+
|
| 17 |
+
# Crop the center of the image
|
| 18 |
+
im = im.crop((left, top, right, bottom))
|
| 19 |
+
|
| 20 |
+
return im
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def pad_to_square(im: Image, color=(0, 0, 0)):
|
| 24 |
+
im = deepcopy(im)
|
| 25 |
+
width, height = im.size
|
| 26 |
+
|
| 27 |
+
vert_pad = (max(width, height) - height) // 2
|
| 28 |
+
hor_pad = (max(width, height) - width) // 2
|
| 29 |
+
|
| 30 |
+
if len(im.mode) == 3:
|
| 31 |
+
color = (0, 0, 0)
|
| 32 |
+
elif len(im.mode) == 1:
|
| 33 |
+
color = 0
|
| 34 |
+
else:
|
| 35 |
+
raise ValueError(f"Image mode not supported. Image has {im.mode} channels.")
|
| 36 |
+
|
| 37 |
+
return add_margin(im, vert_pad, hor_pad, vert_pad, hor_pad, color=color)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def add_margin(pil_img, top, right, bottom, left, color=(0, 0, 0)):
|
| 41 |
+
"""Ref: https://note.nkmk.me/en/python-pillow-add-margin-expand-canvas/"""
|
| 42 |
+
width, height = pil_img.size
|
| 43 |
+
new_width = width + right + left
|
| 44 |
+
new_height = height + top + bottom
|
| 45 |
+
result = Image.new(pil_img.mode, (new_width, new_height), color)
|
| 46 |
+
result.paste(pil_img, (left, top))
|
| 47 |
+
return result
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def resize_image(image, new_height, new_width):
|
| 51 |
+
# Convert the numpy array image to PIL Image
|
| 52 |
+
pil_image = Image.fromarray(image)
|
| 53 |
+
|
| 54 |
+
# Resize the PIL Image
|
| 55 |
+
resized_image = pil_image.resize((new_width, new_height))
|
| 56 |
+
|
| 57 |
+
# Convert the resized PIL Image back to numpy array
|
| 58 |
+
resized_image_np = np.array(resized_image)
|
| 59 |
+
|
| 60 |
+
return resized_image_np
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def pad_to_width(pil_image, new_width, color=(0, 0, 0)):
|
| 64 |
+
"""Pad the image to the specified width."""
|
| 65 |
+
# Convert the numpy array image to PIL Image
|
| 66 |
+
# pil_image = Image.fromarray(image)
|
| 67 |
+
|
| 68 |
+
# Get the current width and height of the image
|
| 69 |
+
width, height = pil_image.size
|
| 70 |
+
assert new_width > width, f"New width {new_width} is less than the current width {width}."
|
| 71 |
+
|
| 72 |
+
# Calculate the padding required
|
| 73 |
+
hor_pad = new_width - width
|
| 74 |
+
|
| 75 |
+
# Add padding to the image
|
| 76 |
+
padded_image = add_margin(pil_image, 0, hor_pad, 0, 0, color=color)
|
| 77 |
+
|
| 78 |
+
# Convert the padded PIL Image back to numpy array
|
| 79 |
+
# padded_image_np = np.array(padded_image)
|
| 80 |
+
|
| 81 |
+
return padded_image
|
shared/utils/io.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utilities for input-output loading/saving.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import Any, List
|
| 6 |
+
import yaml
|
| 7 |
+
import pickle
|
| 8 |
+
import json
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class PrettySafeLoader(yaml.SafeLoader):
|
| 13 |
+
"""Custom loader for reading YAML files"""
|
| 14 |
+
def construct_python_tuple(self, node):
|
| 15 |
+
return tuple(self.construct_sequence(node))
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
PrettySafeLoader.add_constructor(
|
| 19 |
+
u'tag:yaml.org,2002:python/tuple',
|
| 20 |
+
PrettySafeLoader.construct_python_tuple
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def load_yml(path: str, loader_type: str = 'default'):
|
| 25 |
+
"""Read params from a yml file.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
path (str): path to the .yml file
|
| 29 |
+
loader_type (str, optional): type of loader used to load yml files. Defaults to 'default'.
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
Any: object (typically dict) loaded from .yml file
|
| 33 |
+
"""
|
| 34 |
+
assert loader_type in ['default', 'safe']
|
| 35 |
+
|
| 36 |
+
loader = yaml.Loader if (loader_type == "default") else PrettySafeLoader
|
| 37 |
+
|
| 38 |
+
with open(path, 'r') as f:
|
| 39 |
+
data = yaml.load(f, Loader=loader)
|
| 40 |
+
|
| 41 |
+
return data
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def save_yml(data: dict, path: str):
|
| 45 |
+
"""Save params in the given yml file path.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
data (dict): data object to save
|
| 49 |
+
path (str): path to .yml file to be saved
|
| 50 |
+
"""
|
| 51 |
+
with open(path, 'w') as f:
|
| 52 |
+
yaml.dump(data, f, default_flow_style=False)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def load_pkl(path: str, encoding: str = "ascii"):
|
| 56 |
+
"""Loads a .pkl file.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
path (str): path to the .pkl file
|
| 60 |
+
encoding (str, optional): encoding to use for loading. Defaults to "ascii".
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
Any: unpickled object
|
| 64 |
+
"""
|
| 65 |
+
return pickle.load(open(path, "rb"), encoding=encoding)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def save_pkl(data: Any, path: str) -> None:
|
| 69 |
+
"""Saves given object into .pkl file
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
data (Any): object to be saved
|
| 73 |
+
path (str): path to the location to be saved at
|
| 74 |
+
"""
|
| 75 |
+
with open(path, 'wb') as f:
|
| 76 |
+
pickle.dump(data, f)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def load_json(path: str) -> dict:
|
| 80 |
+
"""Helper to load json file"""
|
| 81 |
+
with open(path, 'rb') as f:
|
| 82 |
+
data = json.load(f)
|
| 83 |
+
return data
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def save_json(data: dict, path: str):
|
| 87 |
+
"""Helper to save `dict` as .json file."""
|
| 88 |
+
with open(path, 'w') as f:
|
| 89 |
+
json.dump(data, f)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def load_txt(path: str):
|
| 93 |
+
"""Loads lines of a .txt file.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
path (str): path to the .txt file
|
| 97 |
+
|
| 98 |
+
Returns:
|
| 99 |
+
List: lines of .txt file
|
| 100 |
+
"""
|
| 101 |
+
with open(path) as f:
|
| 102 |
+
lines = f.read().splitlines()
|
| 103 |
+
return lines
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def save_txt(data: dict, path: str):
|
| 107 |
+
"""Writes data (lines) to a txt file.
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
data (dict): List of strings
|
| 111 |
+
path (str): path to .txt file
|
| 112 |
+
"""
|
| 113 |
+
assert isinstance(data, list)
|
| 114 |
+
|
| 115 |
+
lines = "\n".join(data)
|
| 116 |
+
with open(path, "w") as f:
|
| 117 |
+
f.write(str(lines))
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def read_spreadsheet(sheet_id, gid, url=None, drop_na=True, **kwargs):
|
| 121 |
+
if url is None:
|
| 122 |
+
BASE_URL = 'https://docs.google.com/spreadsheets/d/'
|
| 123 |
+
url = BASE_URL + sheet_id + f'/export?gid={gid}&format=csv'
|
| 124 |
+
df = pd.read_csv(url, **kwargs)
|
| 125 |
+
|
| 126 |
+
if drop_na:
|
| 127 |
+
# drop all rows which have atleast 1 NaN value
|
| 128 |
+
df = df.dropna(axis=0)
|
| 129 |
+
|
| 130 |
+
return df
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def load_midi(file, rate=16000):
|
| 134 |
+
import pretty_midi
|
| 135 |
+
assert file.endswith('.mid')
|
| 136 |
+
pm = pretty_midi.PrettyMIDI(file)
|
| 137 |
+
y = pm.synthesize(fs=rate)
|
| 138 |
+
return y, rate
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def load_ptz(path):
|
| 142 |
+
import gzip
|
| 143 |
+
import torch
|
| 144 |
+
with gzip.open(path, 'rb') as f:
|
| 145 |
+
data = torch.load(f)
|
| 146 |
+
return data
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def save_video(frames, path, fps=30):
|
| 150 |
+
import imageio
|
| 151 |
+
imageio.mimwrite(path, frames, fps=fps)
|
shared/utils/keypoint_matching.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implements keypoint matching for a pair of images."""
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import PIL
|
| 5 |
+
import cv2
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def show_single_image(img, figsize=(7, 5), title="Single image"):
|
| 10 |
+
"""Displays a single image."""
|
| 11 |
+
fig = plt.figure(figsize=figsize)
|
| 12 |
+
plt.axis("off")
|
| 13 |
+
plt.imshow(img)
|
| 14 |
+
plt.title(title)
|
| 15 |
+
plt.show()
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def show_two_images(img1, img2, title="Two images"):
|
| 19 |
+
"""Displays a pair of images."""
|
| 20 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5), constrained_layout=True)
|
| 21 |
+
|
| 22 |
+
ax[0].axis("off")
|
| 23 |
+
ax[0].imshow(img1)
|
| 24 |
+
|
| 25 |
+
ax[1].axis("off")
|
| 26 |
+
ax[1].imshow(img2)
|
| 27 |
+
|
| 28 |
+
plt.suptitle(title)
|
| 29 |
+
plt.show()
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def show_three_images(img1, img2, img3, ax1_title="", ax2_title="", ax3_title="", title="Three images"):
|
| 33 |
+
"""Displays a triplet of images."""
|
| 34 |
+
fig, ax = plt.subplots(1, 3, figsize=(15, 5), constrained_layout=True)
|
| 35 |
+
|
| 36 |
+
ax[0].axis("off")
|
| 37 |
+
ax[0].imshow(img1)
|
| 38 |
+
ax[0].set_title(ax1_title)
|
| 39 |
+
|
| 40 |
+
ax[1].axis("off")
|
| 41 |
+
ax[1].imshow(img2)
|
| 42 |
+
ax[1].set_title(ax2_title)
|
| 43 |
+
|
| 44 |
+
ax[2].axis("off")
|
| 45 |
+
ax[2].imshow(img3)
|
| 46 |
+
ax[2].set_title(ax3_title)
|
| 47 |
+
|
| 48 |
+
plt.suptitle(title)
|
| 49 |
+
plt.show()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class KeypointMatcher:
|
| 53 |
+
"""Class for Keypoint matching for a pair of images."""
|
| 54 |
+
|
| 55 |
+
def __init__(self, **sift_args) -> None:
|
| 56 |
+
self.SIFT = cv2.SIFT_create(**sift_args)
|
| 57 |
+
self.BFMatcher = cv2.BFMatcher()
|
| 58 |
+
|
| 59 |
+
@staticmethod
|
| 60 |
+
def _check_images(img1: np.ndarray, img2: np.ndarray):
|
| 61 |
+
assert isinstance(img1, np.ndarray)
|
| 62 |
+
assert len(img1.shape) == 2
|
| 63 |
+
|
| 64 |
+
assert isinstance(img2, np.ndarray)
|
| 65 |
+
assert len(img2.shape) == 2
|
| 66 |
+
|
| 67 |
+
# assert img1.shape == img2.shape
|
| 68 |
+
|
| 69 |
+
@staticmethod
|
| 70 |
+
def _show_matches(img1, kp1, img2, kp2, matches, K=10, figsize=(10, 5), drawMatches_args=dict(matchesThickness=3, singlePointColor=(0, 0, 0))):
|
| 71 |
+
"""Displays matches found in the image"""
|
| 72 |
+
selected_matches = np.random.choice(matches, K)
|
| 73 |
+
img3 = cv2.drawMatches(img1, kp1, img2, kp2, selected_matches, outImg=None, **drawMatches_args)
|
| 74 |
+
show_single_image(img3, figsize=figsize, title=f"Randomly selected K = {K} matches between the pair of images.")
|
| 75 |
+
return img3
|
| 76 |
+
|
| 77 |
+
def match(self, img1: PIL.Image, img2: PIL.Image, show_matches: bool = True):
|
| 78 |
+
"""Finds, describes and matches keypoints in given pair of images."""
|
| 79 |
+
|
| 80 |
+
img1 = np.array(img1)
|
| 81 |
+
img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
|
| 82 |
+
|
| 83 |
+
img2 = np.array(img2)
|
| 84 |
+
img2 = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
|
| 85 |
+
|
| 86 |
+
# check input images
|
| 87 |
+
self._check_images(img1, img2)
|
| 88 |
+
|
| 89 |
+
# find kps and descriptors in each image
|
| 90 |
+
kp1, des1 = self.SIFT.detectAndCompute(img1, None)
|
| 91 |
+
kp2, des2 = self.SIFT.detectAndCompute(img2, None)
|
| 92 |
+
|
| 93 |
+
# compute matches via Brute-force matching
|
| 94 |
+
matches = self.BFMatcher.match(des1, des2)
|
| 95 |
+
|
| 96 |
+
# sort them in the order of their distance
|
| 97 |
+
matches = sorted(matches, key = lambda x:x.distance)
|
| 98 |
+
|
| 99 |
+
if show_matches:
|
| 100 |
+
self._show_matches(img1, kp1, img2, kp2, matches)
|
| 101 |
+
|
| 102 |
+
return matches, kp1, des1, kp2, des2
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def warp(im, M, output_shape):
|
| 106 |
+
out = np.zeros((output_shape[0], output_shape[1]))
|
| 107 |
+
for i in range(output_shape[0]):
|
| 108 |
+
for j in range(output_shape[1]):
|
| 109 |
+
u, v = np.array([[i, j, 0, 0, 1, 0], [0, 0, i, j, 0, 1]]) @ M
|
| 110 |
+
u = int(round(u))
|
| 111 |
+
v = int(round(v))
|
| 112 |
+
if im.shape[0] > u >= 0 and im.shape[1] > v >= 0:
|
| 113 |
+
out[i, j] = im[u, v]
|
| 114 |
+
|
| 115 |
+
return out
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def project_2d_to_6d(X: np.ndarray):
|
| 119 |
+
"""Projects X (N x 2) to Z (2N x 6) space."""
|
| 120 |
+
N = len(X)
|
| 121 |
+
assert X.shape == (N, 2)
|
| 122 |
+
|
| 123 |
+
Z = np.zeros((2 * N, 6))
|
| 124 |
+
# in columns 0 to 2, fill even indexed rows of Z with X, and fill 5th column with 1
|
| 125 |
+
Z[::2, 0:2] = X
|
| 126 |
+
Z[::2, 4] = 1.0
|
| 127 |
+
# in columns 2 to 4, fill odd indexed rows of Z with X
|
| 128 |
+
Z[1::2, 2:4] = X
|
| 129 |
+
Z[1::2, 5] = 1.0
|
| 130 |
+
|
| 131 |
+
return Z
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def project_6d_to_2d(Z: np.ndarray):
|
| 135 |
+
"""Projects Z (2N x 6) to X (N x 2) space."""
|
| 136 |
+
N = len(Z) // 2
|
| 137 |
+
assert Z.shape == (2 * N, 6)
|
| 138 |
+
|
| 139 |
+
X_from_even_rows = Z[::2, 0:2]
|
| 140 |
+
X_from_odd_rows = Z[1::2, 2:4]
|
| 141 |
+
assert (X_from_even_rows == X_from_odd_rows).all()
|
| 142 |
+
|
| 143 |
+
return X_from_even_rows
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def project_2d_to_1d(X: np.ndarray):
|
| 148 |
+
"""Returns X (N x 2) from Z (2N, 1)"""
|
| 149 |
+
N = len(X)
|
| 150 |
+
X_stretched = np.zeros(2 * N)
|
| 151 |
+
X_stretched[::2] = X[:, 0]
|
| 152 |
+
X_stretched[1::2] = X[:, 1]
|
| 153 |
+
return X_stretched
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def project_1d_to_2d(Z: np.ndarray):
|
| 157 |
+
"""Returns X (N x 2) from Z (2N, 1)"""
|
| 158 |
+
N = len(Z) // 2
|
| 159 |
+
assert Z.shape == (2 * N,)
|
| 160 |
+
|
| 161 |
+
X = np.zeros((N, 2))
|
| 162 |
+
X[:, 0] = Z[::2]
|
| 163 |
+
X[:, 1] = Z[1::2]
|
| 164 |
+
|
| 165 |
+
return X
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def rigid_body_transform(X: np.ndarray, params: np.ndarray):
|
| 169 |
+
"""Performs rigid body transformation of points X (N x 2) using params (6 x 1 flattened)"""
|
| 170 |
+
N = len(X)
|
| 171 |
+
assert X.shape == (N, 2)
|
| 172 |
+
|
| 173 |
+
X = project_2d_to_6d(X)
|
| 174 |
+
|
| 175 |
+
X_transformed = np.matmul(X, params)
|
| 176 |
+
X_transformed = project_1d_to_2d(X_transformed)
|
| 177 |
+
assert X_transformed.shape == (N, 2)
|
| 178 |
+
|
| 179 |
+
return X_transformed
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def rigid_body_transform_params(X1: np.ndarray, X2: np.ndarray):
|
| 183 |
+
"""Returns rigid-body transform parameters RT (6 x 1) assuming transformation between X1 and X2"""
|
| 184 |
+
N = len(X1)
|
| 185 |
+
assert X1.shape == X2.shape
|
| 186 |
+
assert X1.shape == (N, 2)
|
| 187 |
+
|
| 188 |
+
# X2 = X1 * params => params = psuedoinverse(X1) * X2
|
| 189 |
+
X1_expanded = project_2d_to_6d(X1)
|
| 190 |
+
assert X1_expanded.shape == (2 * N, 6)
|
| 191 |
+
|
| 192 |
+
X2_stretched = project_2d_to_1d(X2)
|
| 193 |
+
assert X2_stretched.shape == (2 * N,)
|
| 194 |
+
|
| 195 |
+
params = np.dot(np.linalg.pinv(X1_expanded), X2_stretched)
|
| 196 |
+
return params
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
class ImageAlignment:
|
| 200 |
+
"""Class to perform alignment of a pair of images given keypoints."""
|
| 201 |
+
|
| 202 |
+
def __init__(self) -> None:
|
| 203 |
+
pass
|
| 204 |
+
|
| 205 |
+
@staticmethod
|
| 206 |
+
def show_transformed_points(img1, img2, X1, kp1, kp2, matches, params, num_inliers, num_to_show=20):
|
| 207 |
+
import matplotlib.cm as cm
|
| 208 |
+
|
| 209 |
+
H1, W1 = img1.shape
|
| 210 |
+
H2, W2 = img2.shape
|
| 211 |
+
img = np.hstack([img1, img2])
|
| 212 |
+
|
| 213 |
+
random_matches = np.random.choice(matches, num_to_show)
|
| 214 |
+
|
| 215 |
+
fig, ax = plt.subplots(1, 1, figsize=(15, 6))
|
| 216 |
+
colors = cm.rainbow(np.linspace(0, 1, num_to_show))
|
| 217 |
+
|
| 218 |
+
for i, match in enumerate(random_matches):
|
| 219 |
+
|
| 220 |
+
# select a single match to visualize
|
| 221 |
+
x1, y1 = kp1[match.queryIdx].pt
|
| 222 |
+
x2, y2 = kp2[match.trainIdx].pt
|
| 223 |
+
|
| 224 |
+
# get (x1, y1) transformed to (x1_transformed, y1_transformed)
|
| 225 |
+
A = project_2d_to_6d(np.array([[x1, y1]]))
|
| 226 |
+
(x1_transformed, y1_transformed) = np.dot(A, params)
|
| 227 |
+
|
| 228 |
+
ax.imshow(img, cmap="gray")
|
| 229 |
+
ax.axis("off")
|
| 230 |
+
ax.scatter(x1_transformed + W1, y1_transformed, s=200, marker="x", color=colors[i])
|
| 231 |
+
ax.plot(
|
| 232 |
+
(x1, x1_transformed + W1), (y1, y1_transformed),
|
| 233 |
+
linestyle="--", color=colors[i], marker="o",
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
ax.set_title(
|
| 237 |
+
f"Points in image 1 mapped to transformed points estimated by {num_inliers} points.",
|
| 238 |
+
fontsize=18,
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
os.makedirs("./results/", exist_ok=True)
|
| 242 |
+
plt.savefig(f"./results/match_transformed_inliers_{num_inliers}.png", bbox_inches="tight")
|
| 243 |
+
plt.show()
|
| 244 |
+
|
| 245 |
+
def ransac(
|
| 246 |
+
self, img1, kp1, img2, kp2, matches, num_matches=6, max_iter=500,
|
| 247 |
+
radius_in_px=10, show_transformed=True, inlier_th_for_show=1000
|
| 248 |
+
):
|
| 249 |
+
"""Performs RANSAC to find best matches."""
|
| 250 |
+
|
| 251 |
+
best_inlier_count = 0
|
| 252 |
+
best_params = None
|
| 253 |
+
|
| 254 |
+
# get coordinates of all points in image 1
|
| 255 |
+
X1 = np.array([kp1[matches[i].queryIdx].pt for i in range(len(matches))])
|
| 256 |
+
|
| 257 |
+
# get coordinates of all points in image 2
|
| 258 |
+
X2 = np.array([kp2[matches[i].trainIdx].pt for i in range(len(matches))])
|
| 259 |
+
|
| 260 |
+
for i in range(max_iter):
|
| 261 |
+
# choose matches randomly
|
| 262 |
+
selected_matches = np.random.choice(matches, num_matches)
|
| 263 |
+
|
| 264 |
+
# get matched keypoints in img1
|
| 265 |
+
X1_selected = np.array([kp1[selected_matches[i].queryIdx].pt for i in range(len(selected_matches))])
|
| 266 |
+
|
| 267 |
+
# get matched keypoints in img2
|
| 268 |
+
X2_selected = np.array([kp2[selected_matches[i].trainIdx].pt for i in range(len(selected_matches))])
|
| 269 |
+
|
| 270 |
+
# get transformation parameters
|
| 271 |
+
params = rigid_body_transform_params(X1_selected, X2_selected)
|
| 272 |
+
|
| 273 |
+
# transform X1 to get X2_transformed
|
| 274 |
+
X2_transformed = rigid_body_transform(X1, params)
|
| 275 |
+
|
| 276 |
+
# find inliers
|
| 277 |
+
diff = np.linalg.norm(X2_transformed - X2, axis=1)
|
| 278 |
+
indices = diff < radius_in_px
|
| 279 |
+
num_inliers = sum(indices)
|
| 280 |
+
if num_inliers > best_inlier_count:
|
| 281 |
+
print(f"Found {num_inliers} inliers!")
|
| 282 |
+
best_params = params
|
| 283 |
+
best_inlier_count = num_inliers
|
| 284 |
+
|
| 285 |
+
if show_transformed and num_inliers > inlier_th_for_show:
|
| 286 |
+
self.show_transformed_points(img1, img2, X1, kp1, kp2, matches, best_params, num_inliers)
|
| 287 |
+
|
| 288 |
+
return best_params
|
| 289 |
+
|
| 290 |
+
def align(
|
| 291 |
+
self, img1, kp1, img2, kp2, matches, num_matches=6,
|
| 292 |
+
max_iter=500, show_warped_image=True,
|
| 293 |
+
save_warped=False, path="results/sample.png",
|
| 294 |
+
method="custom"
|
| 295 |
+
):
|
| 296 |
+
best_params = self.ransac(img1, kp1, img2, kp2, matches, max_iter=max_iter, num_matches=num_matches)
|
| 297 |
+
|
| 298 |
+
# apply the affine transformation using cv2.warpAffine()
|
| 299 |
+
rows, cols = img1.shape[:2]
|
| 300 |
+
|
| 301 |
+
if method == 'custom':
|
| 302 |
+
img1_warped = warp(img1, best_params, (rows, cols))
|
| 303 |
+
else:
|
| 304 |
+
M = np.zeros((2, 3))
|
| 305 |
+
M[0, :2] = best_params[:2]
|
| 306 |
+
M[1, :2] = best_params[2:4]
|
| 307 |
+
M[0, 2] = best_params[4]
|
| 308 |
+
M[1, 2] = best_params[5]
|
| 309 |
+
img1_warped = cv2.warpAffine(img1, M, (cols, rows))
|
| 310 |
+
|
| 311 |
+
if show_warped_image:
|
| 312 |
+
show_three_images(
|
| 313 |
+
img1, img2, img1_warped, title="",
|
| 314 |
+
ax1_title="Image 1", ax2_title="Image 2", ax3_title="Transformation: Image 1 to Image 2",
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
if save_warped:
|
| 318 |
+
plt.imsave(path, img1_warped)
|
| 319 |
+
|
| 320 |
+
return best_params
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
if __name__ == "__main__":
|
| 324 |
+
# read & show images
|
| 325 |
+
boat1 = cv2.imread('boat1.pgm', cv2.IMREAD_GRAYSCALE)
|
| 326 |
+
boat2 = cv2.imread('boat2.pgm', cv2.IMREAD_GRAYSCALE)
|
| 327 |
+
show_two_images(boat1, boat2, title="Given pair of images.")
|
| 328 |
+
|
| 329 |
+
kp_matcher = KeypointMatcher(contrastThreshold=0.1, edgeThreshold=5)
|
| 330 |
+
matches, kp1, des1, kp2, des2 = kp_matcher.match(boat1, boat2, show_matches=True)
|
shared/utils/log.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Loggers."""
|
| 2 |
+
import os
|
| 3 |
+
from os.path import dirname, realpath, abspath
|
| 4 |
+
from tqdm.auto import tqdm
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
curr_filepath = abspath(__file__)
|
| 9 |
+
repo_path = dirname(dirname(dirname(curr_filepath)))
|
| 10 |
+
# repo_path = dirname(dirname(dirname(realpath(__file__))))
|
| 11 |
+
|
| 12 |
+
def tqdm_iterator(items, desc=None, bar_format=None, **kwargs):
|
| 13 |
+
tqdm._instances.clear()
|
| 14 |
+
iterator = tqdm(
|
| 15 |
+
items,
|
| 16 |
+
desc=desc,
|
| 17 |
+
# bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}',
|
| 18 |
+
**kwargs,
|
| 19 |
+
)
|
| 20 |
+
tqdm._instances.clear()
|
| 21 |
+
|
| 22 |
+
return iterator
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def print_retrieval_metrics_for_csv(metrics, scale=100):
|
| 26 |
+
print_string = [
|
| 27 |
+
np.round(scale * metrics["R1"], 3),
|
| 28 |
+
np.round(scale * metrics["R5"], 3),
|
| 29 |
+
np.round(scale * metrics["R10"], 3),
|
| 30 |
+
]
|
| 31 |
+
if "MR" in metrics:
|
| 32 |
+
print_string += [metrics["MR"]]
|
| 33 |
+
print()
|
| 34 |
+
print("Final metrics: ", ",".join([str(x) for x in print_string]))
|
| 35 |
+
print()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def print_update(update, fillchar=":", color="yellow", pos="center"):
|
| 39 |
+
from termcolor import colored
|
| 40 |
+
# add ::: to the beginning and end of the update s.t. the total length of the
|
| 41 |
+
# update spans the whole terminal
|
| 42 |
+
try:
|
| 43 |
+
terminal_width = os.get_terminal_size().columns - 2
|
| 44 |
+
except:
|
| 45 |
+
terminal_width = 98
|
| 46 |
+
if pos == "center":
|
| 47 |
+
update = update.center(len(update) + 2, " ")
|
| 48 |
+
update = update.center(terminal_width, fillchar)
|
| 49 |
+
elif pos == "left":
|
| 50 |
+
update = update.ljust(terminal_width, fillchar)
|
| 51 |
+
update = update.ljust(len(update) + 2, " ")
|
| 52 |
+
elif pos == "right":
|
| 53 |
+
update = update.rjust(terminal_width, fillchar)
|
| 54 |
+
update = update.rjust(len(update) + 2, " ")
|
| 55 |
+
else:
|
| 56 |
+
raise ValueError("pos must be one of 'center', 'left', 'right'")
|
| 57 |
+
print(colored(update, color))
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def json_print(data, indent=4):
|
| 61 |
+
import json
|
| 62 |
+
print(json.dumps(data, indent=indent))
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_terminal_width():
|
| 66 |
+
import shutil
|
| 67 |
+
return shutil.get_terminal_size().columns
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
if __name__ == "__main__":
|
| 71 |
+
print("Repo path:", repo_path)
|
| 72 |
+
|
shared/utils/metrics.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Helpers for metric functions"""
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def calculate_iou(box1, box2):
|
| 7 |
+
"""
|
| 8 |
+
Calculate Intersection over Union (IoU) between two bounding boxes.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
box1 (tuple): Coordinates of the first bounding box in the format (x1, y1, x2, y2).
|
| 12 |
+
box2 (tuple): Coordinates of the second bounding box in the format (x1, y1, x2, y2).
|
| 13 |
+
|
| 14 |
+
Returns:
|
| 15 |
+
float: Intersection over Union (IoU) score.
|
| 16 |
+
"""
|
| 17 |
+
# Extract coordinates
|
| 18 |
+
x1, y1, x2, y2 = box1
|
| 19 |
+
x1_, y1_, x2_, y2_ = box2
|
| 20 |
+
|
| 21 |
+
# Calculate the intersection area
|
| 22 |
+
intersection_area = max(0, min(x2, x2_) - max(x1, x1_)) * max(0, min(y2, y2_) - max(y1, y1_))
|
| 23 |
+
|
| 24 |
+
# Calculate the areas of each bounding box
|
| 25 |
+
box1_area = (x2 - x1) * (y2 - y1)
|
| 26 |
+
box2_area = (x2_ - x1_) * (y2_ - y1_)
|
| 27 |
+
|
| 28 |
+
# Calculate IoU
|
| 29 |
+
iou = intersection_area / float(box1_area + box2_area - intersection_area)
|
| 30 |
+
|
| 31 |
+
return iou
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def compute_intersection_1d(x, y):
|
| 35 |
+
# sort the boxes
|
| 36 |
+
x1, x2 = sorted(x)
|
| 37 |
+
y1, y2 = sorted(y)
|
| 38 |
+
|
| 39 |
+
# compute the intersection
|
| 40 |
+
intersection = max(0, min(x2, y2) - max(x1, y1))
|
| 41 |
+
|
| 42 |
+
return intersection
|
| 43 |
+
|
| 44 |
+
def compute_union_1d(x, y):
|
| 45 |
+
# sort the boxes
|
| 46 |
+
x1, x2 = sorted(x)
|
| 47 |
+
y1, y2 = sorted(y)
|
| 48 |
+
|
| 49 |
+
# compute the union
|
| 50 |
+
union = max(x2, y2) - min(x1, y1)
|
| 51 |
+
|
| 52 |
+
return union
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def compute_iou_1d(pred_box, true_box):
|
| 56 |
+
"""
|
| 57 |
+
Compute IoU for 1D boxes.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
pred_box (float): Predicted box, [x1, x2]
|
| 61 |
+
true_box (float): Ground truth box, [x1, x2]
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
float: IoU
|
| 65 |
+
"""
|
| 66 |
+
intersection = compute_intersection_1d(pred_box, true_box)
|
| 67 |
+
union = compute_union_1d(pred_box, true_box)
|
| 68 |
+
iou = intersection / union
|
| 69 |
+
return iou
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def compute_iou_1d_single_candidate_multiple_targets(pred_box, true_boxes):
|
| 73 |
+
"""
|
| 74 |
+
Compute IoU for 1D boxes.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
pred_box (float): Predicted box, [x1, x2]
|
| 78 |
+
true_boxes (np.ndarray): Ground truth boxes, shape: (N, 2)
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
float: IoU
|
| 82 |
+
"""
|
| 83 |
+
ious = []
|
| 84 |
+
for i, true_box in enumerate(true_boxes):
|
| 85 |
+
ious.append(compute_iou_1d(pred_box, true_box))
|
| 86 |
+
return np.array(ious)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def compute_iou_1d_multiple_candidates_multiple_targets(pred_boxes, true_boxes):
|
| 90 |
+
"""
|
| 91 |
+
Compute IoU for 1D boxes.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
pred_boxes (np.ndarray): Predicted boxes, shape: (N, 2)
|
| 95 |
+
true_boxes (np.ndarray): Ground truth boxes, shape: (N, 2)
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
float: IoU
|
| 99 |
+
"""
|
| 100 |
+
iou_matrix = np.zeros((len(pred_boxes), len(true_boxes)))
|
| 101 |
+
for i, pred_box in enumerate(pred_boxes):
|
| 102 |
+
for j, true_box in enumerate(true_boxes):
|
| 103 |
+
iou_matrix[i, j] = compute_iou_1d(pred_box, true_box)
|
| 104 |
+
return iou_matrix
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def compute_mean_iou_1d(pred_boxes, gt_boxes, threshold=0.5):
|
| 108 |
+
"""
|
| 109 |
+
Computes mean IOU for 1D bounding boxes.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
pred_boxes (np.ndarray): Predicted boxes, shape: (N, 2)
|
| 113 |
+
gt_boxes (np.ndarray): Ground truth boxes, shape: (N, 2)
|
| 114 |
+
threshold (float): Threshold to consider a prediction correct
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
float: Mean IOU
|
| 118 |
+
"""
|
| 119 |
+
# Compute IoU for each pair of boxes
|
| 120 |
+
iou_matrix = np.zeros((len(pred_boxes), len(gt_boxes)))
|
| 121 |
+
for i, pred_box in enumerate(pred_boxes):
|
| 122 |
+
for j, gt_box in enumerate(gt_boxes):
|
| 123 |
+
iou_matrix[i, j] = compute_iou_1d(pred_box, gt_box)
|
| 124 |
+
|
| 125 |
+
# Compute the max IoU for each predicted box
|
| 126 |
+
max_iou_indices = np.argmax(iou_matrix, axis=1)
|
| 127 |
+
max_iou = iou_matrix[np.arange(len(pred_boxes)), max_iou_indices]
|
| 128 |
+
|
| 129 |
+
# For each predicted box, compute TP and FP ground truth boxes
|
| 130 |
+
tp = np.zeros(len(pred_boxes))
|
| 131 |
+
fp = np.zeros(len(pred_boxes))
|
| 132 |
+
iou = np.zeros(len(pred_boxes))
|
| 133 |
+
|
| 134 |
+
tp = np.where(iou_matrix >= threshold, 1, 0)
|
| 135 |
+
tp = max_iou >= threshold
|
| 136 |
+
fp = max_iou < threshold
|
| 137 |
+
iou = max_iou
|
| 138 |
+
mean_iou = np.mean(iou)
|
| 139 |
+
import ipdb; ipdb.set_trace()
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def calculate_mAP_1d(pred_boxes, pred_scores, true_boxes, iou_thresh=0.5):
|
| 148 |
+
"""Calculate mean average precision for 1D boxes.
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
pred_boxes (numpy array): Predicted boxes, shape (num_boxes,)
|
| 152 |
+
pred_scores (numpy array): Predicted scores, shape (num_boxes,)
|
| 153 |
+
true_boxes (numpy array): Ground truth boxes, shape (num_boxes,)
|
| 154 |
+
iou_thresh (float): IoU threshold to consider a prediction correct
|
| 155 |
+
|
| 156 |
+
Returns:
|
| 157 |
+
float: Mean average precision (mAP)
|
| 158 |
+
"""
|
| 159 |
+
# Sort predicted boxes by score (in descending order)
|
| 160 |
+
sort_inds = np.argsort(pred_scores)[::-1]
|
| 161 |
+
pred_boxes = pred_boxes[sort_inds]
|
| 162 |
+
pred_scores = pred_scores[sort_inds]
|
| 163 |
+
|
| 164 |
+
# Compute true positives and false positives at each threshold
|
| 165 |
+
tp = np.zeros(len(pred_boxes))
|
| 166 |
+
fp = np.zeros(len(pred_boxes))
|
| 167 |
+
for i, box in enumerate(pred_boxes):
|
| 168 |
+
ious = np.abs(box - true_boxes) / np.maximum(1e-9, np.abs(box) + np.abs(true_boxes))
|
| 169 |
+
if len(ious) > 0:
|
| 170 |
+
max_iou_idx = np.argmax(ious)
|
| 171 |
+
if ious[max_iou_idx] >= iou_thresh:
|
| 172 |
+
if tp[max_iou_idx] == 0:
|
| 173 |
+
tp[i] = 1
|
| 174 |
+
fp[i] = 0
|
| 175 |
+
else:
|
| 176 |
+
fp[i] = 1
|
| 177 |
+
else:
|
| 178 |
+
fp[i] = 1
|
| 179 |
+
|
| 180 |
+
# Compute precision and recall at each threshold
|
| 181 |
+
tp_cumsum = np.cumsum(tp)
|
| 182 |
+
fp_cumsum = np.cumsum(fp)
|
| 183 |
+
recall = tp_cumsum / len(true_boxes)
|
| 184 |
+
precision = tp_cumsum / (tp_cumsum + fp_cumsum)
|
| 185 |
+
|
| 186 |
+
# Compute AP as area under precision-recall curve
|
| 187 |
+
ap = 0
|
| 188 |
+
for t in np.arange(0, 1.1, 0.1):
|
| 189 |
+
if np.sum(recall >= t) == 0:
|
| 190 |
+
p = 0
|
| 191 |
+
else:
|
| 192 |
+
p = np.max(precision[recall >= t])
|
| 193 |
+
ap += p / 11
|
| 194 |
+
|
| 195 |
+
return ap
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def segment_iou(target_segment, candidate_segments):
|
| 199 |
+
"""Compute the temporal intersection over union between a
|
| 200 |
+
target segment and all the test segments.
|
| 201 |
+
Parameters
|
| 202 |
+
----------
|
| 203 |
+
target_segment : 1d array
|
| 204 |
+
Temporal target segment containing [starting, ending] times.
|
| 205 |
+
candidate_segments : 2d array
|
| 206 |
+
Temporal candidate segments containing N x [starting, ending] times.
|
| 207 |
+
Outputs
|
| 208 |
+
-------
|
| 209 |
+
tiou : 1d array
|
| 210 |
+
Temporal intersection over union score of the N's candidate segments.
|
| 211 |
+
"""
|
| 212 |
+
tt1 = np.maximum(target_segment[0], candidate_segments[:, 0])
|
| 213 |
+
tt2 = np.minimum(target_segment[1], candidate_segments[:, 1])
|
| 214 |
+
# Intersection including Non-negative overlap score.
|
| 215 |
+
segments_intersection = (tt2 - tt1).clip(0)
|
| 216 |
+
# Segment union.
|
| 217 |
+
segments_union = (candidate_segments[:, 1] - candidate_segments[:, 0]) \
|
| 218 |
+
+ (target_segment[1] - target_segment[0]) - segments_intersection
|
| 219 |
+
# Compute overlap as the ratio of the intersection
|
| 220 |
+
# over union of two segments.
|
| 221 |
+
tIoU = segments_intersection.astype(float) / segments_union
|
| 222 |
+
return tIoU
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def interpolated_prec_rec(prec, rec):
|
| 226 |
+
"""Interpolated AP - VOCdevkit from VOC 2011.
|
| 227 |
+
"""
|
| 228 |
+
mprec = np.hstack([[0], prec, [0]])
|
| 229 |
+
mrec = np.hstack([[0], rec, [1]])
|
| 230 |
+
for i in range(len(mprec) - 1)[::-1]:
|
| 231 |
+
mprec[i] = max(mprec[i], mprec[i + 1])
|
| 232 |
+
idx = np.where(mrec[1::] != mrec[0:-1])[0] + 1
|
| 233 |
+
ap = np.sum((mrec[idx] - mrec[idx - 1]) * mprec[idx])
|
| 234 |
+
return ap
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
from tqdm import tqdm
|
| 238 |
+
def compute_average_precision_detection(
|
| 239 |
+
ground_truth,
|
| 240 |
+
prediction,
|
| 241 |
+
tiou_thresholds=np.linspace(0.5, 0.95, 10),
|
| 242 |
+
):
|
| 243 |
+
"""Compute average precision (detection task) between ground truth and
|
| 244 |
+
predictions data frames. If multiple predictions occurs for the same
|
| 245 |
+
predicted segment, only the one with highest score is matches as
|
| 246 |
+
true positive. This code is greatly inspired by Pascal VOC devkit.
|
| 247 |
+
|
| 248 |
+
Ref: https://github.com/zhang-can/CoLA/blob/\
|
| 249 |
+
d21f1b5a4c6c13f9715cfd4ac1ebcd065d179157/eval/eval_detection.py#L200
|
| 250 |
+
|
| 251 |
+
Parameters
|
| 252 |
+
----------
|
| 253 |
+
ground_truth : df
|
| 254 |
+
Data frame containing the ground truth instances.
|
| 255 |
+
Required fields: ['video-id', 't-start', 't-end']
|
| 256 |
+
prediction : df
|
| 257 |
+
Data frame containing the prediction instances.
|
| 258 |
+
Required fields: ['video-id, 't-start', 't-end', 'score']
|
| 259 |
+
tiou_thresholds : 1darray, optional
|
| 260 |
+
Temporal intersection over union threshold.
|
| 261 |
+
Outputs
|
| 262 |
+
-------
|
| 263 |
+
ap : float
|
| 264 |
+
Average precision score.
|
| 265 |
+
"""
|
| 266 |
+
ap = np.zeros(len(tiou_thresholds))
|
| 267 |
+
if prediction.empty:
|
| 268 |
+
return ap
|
| 269 |
+
|
| 270 |
+
npos = float(len(ground_truth))
|
| 271 |
+
lock_gt = np.ones((len(tiou_thresholds),len(ground_truth))) * -1
|
| 272 |
+
# Sort predictions by decreasing score order.
|
| 273 |
+
sort_idx = prediction['score'].values.argsort()[::-1]
|
| 274 |
+
prediction = prediction.loc[sort_idx].reset_index(drop=True)
|
| 275 |
+
|
| 276 |
+
# Initialize true positive and false positive vectors.
|
| 277 |
+
tp = np.zeros((len(tiou_thresholds), len(prediction)))
|
| 278 |
+
fp = np.zeros((len(tiou_thresholds), len(prediction)))
|
| 279 |
+
|
| 280 |
+
# Adaptation to query faster
|
| 281 |
+
ground_truth_gbvn = ground_truth.groupby('video-id')
|
| 282 |
+
|
| 283 |
+
# Assigning true positive to truly grount truth instances.
|
| 284 |
+
for idx, this_pred in prediction.iterrows():
|
| 285 |
+
|
| 286 |
+
try:
|
| 287 |
+
# Check if there is at least one ground truth in the video associated.
|
| 288 |
+
ground_truth_videoid = ground_truth_gbvn.get_group(this_pred['video-id'])
|
| 289 |
+
except Exception as e:
|
| 290 |
+
fp[:, idx] = 1
|
| 291 |
+
continue
|
| 292 |
+
|
| 293 |
+
this_gt = ground_truth_videoid.reset_index()
|
| 294 |
+
tiou_arr = segment_iou(this_pred[['t-start', 't-end']].values,
|
| 295 |
+
this_gt[['t-start', 't-end']].values)
|
| 296 |
+
# We would like to retrieve the predictions with highest tiou score.
|
| 297 |
+
tiou_sorted_idx = tiou_arr.argsort()[::-1]
|
| 298 |
+
for tidx, tiou_thr in enumerate(tiou_thresholds):
|
| 299 |
+
for jdx in tiou_sorted_idx:
|
| 300 |
+
if tiou_arr[jdx] < tiou_thr:
|
| 301 |
+
fp[tidx, idx] = 1
|
| 302 |
+
break
|
| 303 |
+
if lock_gt[tidx, this_gt.loc[jdx]['index']] >= 0:
|
| 304 |
+
continue
|
| 305 |
+
# Assign as true positive after the filters above.
|
| 306 |
+
tp[tidx, idx] = 1
|
| 307 |
+
lock_gt[tidx, this_gt.loc[jdx]['index']] = idx
|
| 308 |
+
break
|
| 309 |
+
|
| 310 |
+
if fp[tidx, idx] == 0 and tp[tidx, idx] == 0:
|
| 311 |
+
fp[tidx, idx] = 1
|
| 312 |
+
|
| 313 |
+
tp_cumsum = np.cumsum(tp, axis=1).astype(float)
|
| 314 |
+
fp_cumsum = np.cumsum(fp, axis=1).astype(float)
|
| 315 |
+
recall_cumsum = tp_cumsum / npos
|
| 316 |
+
|
| 317 |
+
precision_cumsum = tp_cumsum / (tp_cumsum + fp_cumsum)
|
| 318 |
+
|
| 319 |
+
for tidx in range(len(tiou_thresholds)):
|
| 320 |
+
ap[tidx] = interpolated_prec_rec(precision_cumsum[tidx,:], recall_cumsum[tidx,:])
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
return ap
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
def ap_wrapper(
|
| 327 |
+
true_clips,
|
| 328 |
+
pred_clips,
|
| 329 |
+
pred_scores,
|
| 330 |
+
tiou_thresholds=np.linspace(0.5, 0.95, 10),
|
| 331 |
+
):
|
| 332 |
+
assert isinstance(true_clips, np.ndarray)
|
| 333 |
+
assert len(true_clips.shape) == 2 and true_clips.shape[1] == 2
|
| 334 |
+
assert isinstance(pred_clips, np.ndarray)
|
| 335 |
+
assert len(pred_clips.shape) == 2 and pred_clips.shape[1] == 2
|
| 336 |
+
assert isinstance(pred_scores, np.ndarray)
|
| 337 |
+
assert len(pred_scores.shape) == 1 and len(pred_scores) == pred_clips.shape[0]
|
| 338 |
+
|
| 339 |
+
true_df = pd.DataFrame(
|
| 340 |
+
{
|
| 341 |
+
"video-id": ["video1"] * len(true_clips),
|
| 342 |
+
"t-start": true_clips[:, 0],
|
| 343 |
+
"t-end": true_clips[:, 1],
|
| 344 |
+
}
|
| 345 |
+
)
|
| 346 |
+
pred_df = pd.DataFrame(
|
| 347 |
+
{
|
| 348 |
+
"video-id": ["video1"] * len(pred_clips),
|
| 349 |
+
"t-start": pred_clips[:, 0],
|
| 350 |
+
"t-end": pred_clips[:, 1],
|
| 351 |
+
"score": pred_scores,
|
| 352 |
+
}
|
| 353 |
+
)
|
| 354 |
+
return compute_average_precision_detection(
|
| 355 |
+
true_df,
|
| 356 |
+
pred_df,
|
| 357 |
+
tiou_thresholds=tiou_thresholds,
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def nms_1d(df: pd.DataFrame, score_col="score", iou_thresh=0.5):
|
| 362 |
+
"""Applies NMS on 1D (start, end) box predictions."""
|
| 363 |
+
columns = set(df.columns)
|
| 364 |
+
# assert columns == set(["video_id", "start", "end", "score"])
|
| 365 |
+
assert set(["start", "end", "video_id", score_col]).issubset(columns)
|
| 366 |
+
video_ids = df["video_id"].unique()
|
| 367 |
+
|
| 368 |
+
# Group by video_id
|
| 369 |
+
groups = df.groupby("video_id")
|
| 370 |
+
|
| 371 |
+
# Loop over videos
|
| 372 |
+
keep_indices = []
|
| 373 |
+
net_success_fraction = []
|
| 374 |
+
tqdm._instances.clear()
|
| 375 |
+
iterator = tqdm(
|
| 376 |
+
video_ids,
|
| 377 |
+
desc="Applying NMS to each video",
|
| 378 |
+
bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}',
|
| 379 |
+
)
|
| 380 |
+
for video_id in iterator:
|
| 381 |
+
|
| 382 |
+
# Get rows for this video
|
| 383 |
+
rows = groups.get_group(video_id)
|
| 384 |
+
|
| 385 |
+
# Sort by score
|
| 386 |
+
rows = rows.sort_values(score_col, ascending=False)
|
| 387 |
+
|
| 388 |
+
# Loop over rows until empty
|
| 389 |
+
n_clips = len(rows)
|
| 390 |
+
n_clips_selected_in_video = 0
|
| 391 |
+
while len(rows):
|
| 392 |
+
|
| 393 |
+
# Add top row to keep_indices
|
| 394 |
+
top_row = rows.iloc[0]
|
| 395 |
+
keep_indices.append(rows.index[0])
|
| 396 |
+
n_clips_selected_in_video += 1
|
| 397 |
+
top_row = top_row.to_dict()
|
| 398 |
+
|
| 399 |
+
top_segment = np.array([top_row["start"], top_row["end"]])
|
| 400 |
+
rows = rows.iloc[1:]
|
| 401 |
+
other_segments = rows[["start", "end"]].values
|
| 402 |
+
iou_values = segment_iou(top_segment, other_segments)
|
| 403 |
+
|
| 404 |
+
# Remove rows IoU > iou_thresh
|
| 405 |
+
rows = rows[iou_values < iou_thresh]
|
| 406 |
+
|
| 407 |
+
net_success_fraction.append(n_clips_selected_in_video / n_clips)
|
| 408 |
+
net_success_fraction = np.array(net_success_fraction).mean()
|
| 409 |
+
print("> Net success fraction: {:.2f}".format(net_success_fraction))
|
| 410 |
+
|
| 411 |
+
return keep_indices
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
if __name__ == "__main__":
|
| 415 |
+
true_clips = np.array(
|
| 416 |
+
[
|
| 417 |
+
[0.1, 0.7],
|
| 418 |
+
[3.4, 7.8],
|
| 419 |
+
[3.9, 5.4],
|
| 420 |
+
]
|
| 421 |
+
)
|
| 422 |
+
pred_clips = np.array(
|
| 423 |
+
[
|
| 424 |
+
[0.2, 0.8],
|
| 425 |
+
[3.5, 7.9],
|
| 426 |
+
[3.9, 5.4],
|
| 427 |
+
[5.6, 6.7],
|
| 428 |
+
[6.0, 6.5],
|
| 429 |
+
],
|
| 430 |
+
)
|
| 431 |
+
pred_scores = np.array([0.9, 0.8, 0.7, 0.6, 0.5])
|
| 432 |
+
|
| 433 |
+
# 1. Check IoU for a single pair of boxes
|
| 434 |
+
iou = compute_iou_1d(pred_clips[0], true_clips[0])
|
| 435 |
+
# Manually check that the result is correct
|
| 436 |
+
# Clips are [0.1, 0.7] and [0.2, 0.8]
|
| 437 |
+
# Intersection: [0.2, 0.7] - length = 0.5
|
| 438 |
+
# Union: [0.1, 0.8] - length = 0.7
|
| 439 |
+
# Ratio: 0.5 / 0.7 = 0.714
|
| 440 |
+
assert np.isclose(iou, 0.714, 3), "Incorrect IoU"
|
| 441 |
+
|
| 442 |
+
# 2. Check IoU for a single predicted box and multiple ground truth boxes
|
| 443 |
+
ious = compute_iou_1d_single_candidate_multiple_targets(pred_clips[0], true_clips)
|
| 444 |
+
assert np.allclose(ious, [0.714, 0.0, 0.0], 3), "Incorrect IoU"
|
| 445 |
+
|
| 446 |
+
# 3. Check mean IoU for multiple predicted boxes and multiple ground truth boxes
|
| 447 |
+
ious = compute_iou_1d_multiple_candidates_multiple_targets(pred_clips, true_clips)
|
| 448 |
+
assert ious.shape == (5, 3), "Incorrect shape"
|
| 449 |
+
|
| 450 |
+
ap = ap_wrapper(
|
| 451 |
+
true_clips,
|
| 452 |
+
pred_clips,
|
| 453 |
+
pred_scores,
|
| 454 |
+
tiou_thresholds=np.linspace(0.5, 0.95, 3),
|
| 455 |
+
)
|
| 456 |
+
# Take the mean of the APs across IoU thresholds
|
| 457 |
+
final_ap = np.mean(ap)
|
| 458 |
+
import ipdb; ipdb.set_trace()
|
shared/utils/misc.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Misc utils."""
|
| 2 |
+
import os
|
| 3 |
+
from shared.utils.log import tqdm_iterator
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class AttrDict(dict):
|
| 8 |
+
def __init__(self, *args, **kwargs):
|
| 9 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
| 10 |
+
self.__dict__ = self
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def ignore_warnings(type="ignore"):
|
| 14 |
+
import warnings
|
| 15 |
+
warnings.filterwarnings(type)
|
| 16 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def download_youtube_video(youtube_id, ext='mp4', resolution="360p", **kwargs):
|
| 20 |
+
import pytube
|
| 21 |
+
video_url = f"https://www.youtube.com/watch?v={youtube_id}"
|
| 22 |
+
yt = pytube.YouTube(video_url)
|
| 23 |
+
try:
|
| 24 |
+
streams = yt.streams.filter(
|
| 25 |
+
file_extension=ext, res=resolution, progressive=True, **kwargs,
|
| 26 |
+
)
|
| 27 |
+
# streams[0].download(output_path=save_dir, filename=f"{video_id}.{ext}")
|
| 28 |
+
streams[0].download(output_path='/tmp', filename='sample.mp4')
|
| 29 |
+
except:
|
| 30 |
+
print("Failed to download video: ", video_url)
|
| 31 |
+
return None
|
| 32 |
+
return "/tmp/sample.mp4"
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def check_audio(video_path):
|
| 36 |
+
from moviepy.video.io.VideoFileClip import VideoFileClip
|
| 37 |
+
try:
|
| 38 |
+
return VideoFileClip(video_path).audio is not None
|
| 39 |
+
except:
|
| 40 |
+
return False
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def check_audio_multiple(video_paths, n_jobs=8):
|
| 44 |
+
"""Parallelly check if videos have audio"""
|
| 45 |
+
iterator = tqdm_iterator(video_paths, desc="Checking audio")
|
| 46 |
+
from joblib import Parallel, delayed
|
| 47 |
+
return Parallel(n_jobs=n_jobs)(
|
| 48 |
+
delayed(check_audio)(video_path) for video_path in iterator
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def num_trainable_params(model, round=3, verbose=True, return_count=False):
|
| 53 |
+
n_params = sum([p.numel() for p in model.parameters() if p.requires_grad])
|
| 54 |
+
model_name = model.__class__.__name__
|
| 55 |
+
if round is not None:
|
| 56 |
+
value = np.round(n_params / 1e6, round)
|
| 57 |
+
unit = "M"
|
| 58 |
+
else:
|
| 59 |
+
value = n_params
|
| 60 |
+
unit = ""
|
| 61 |
+
if verbose:
|
| 62 |
+
print(f"::: Number of trainable parameters in {model_name}: {value} {unit}")
|
| 63 |
+
if return_count:
|
| 64 |
+
return n_params
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def num_params(model, round=3):
|
| 68 |
+
n_params = sum([p.numel() for p in model.parameters()])
|
| 69 |
+
model_name = model.__class__.__name__
|
| 70 |
+
if round is not None:
|
| 71 |
+
value = np.round(n_params / 1e6, round)
|
| 72 |
+
unit = "M"
|
| 73 |
+
else:
|
| 74 |
+
value = n_params
|
| 75 |
+
unit = ""
|
| 76 |
+
print(f"::: Number of total parameters in {model_name}: {value}{unit}")
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def fix_seed(seed=42):
|
| 80 |
+
"""Fix all numpy/pytorch/random seeds."""
|
| 81 |
+
import random
|
| 82 |
+
import torch
|
| 83 |
+
import numpy as np
|
| 84 |
+
random.seed(seed)
|
| 85 |
+
np.random.seed(seed)
|
| 86 |
+
torch.manual_seed(seed)
|
| 87 |
+
torch.cuda.manual_seed_all(seed)
|
| 88 |
+
torch.backends.cudnn.deterministic = True
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def check_tensor(x):
|
| 92 |
+
print(x.shape, x.min(), x.max())
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def find_nearest_indices(a, b):
|
| 96 |
+
"""
|
| 97 |
+
Finds the indices of the elements in `a` that are closest to each element in `b`.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
a (np.ndarray): The array to search for the closest values.
|
| 101 |
+
b (np.ndarray): The array of values to search for.
|
| 102 |
+
|
| 103 |
+
Returns:
|
| 104 |
+
np.ndarray: The indices of the closest values in `a` for each element in `b`.
|
| 105 |
+
"""
|
| 106 |
+
# Reshape `a` and `b` to make use of broadcasting
|
| 107 |
+
a = np.array(a)
|
| 108 |
+
b = np.array(b)
|
| 109 |
+
|
| 110 |
+
# Calculate the absolute difference between each element in `b` and all elements in `a`
|
| 111 |
+
diff = np.abs(a - b[:, np.newaxis])
|
| 112 |
+
|
| 113 |
+
# Find the index of the minimum value along the second axis (which corresponds to `a`)
|
| 114 |
+
indices = np.argmin(diff, axis=1)
|
| 115 |
+
|
| 116 |
+
return indices
|
shared/utils/pandas_utils.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utility functions for pandas operations"""
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def apply_filters(df: pd.DataFrame, filters: dict, reset_index=False):
|
| 9 |
+
"""
|
| 10 |
+
Filters df based on given filters (key-values pairs).
|
| 11 |
+
"""
|
| 12 |
+
import omegaconf
|
| 13 |
+
X = df.copy()
|
| 14 |
+
|
| 15 |
+
all_indices = []
|
| 16 |
+
for col, values in filters.items():
|
| 17 |
+
if isinstance(values, (list, tuple, np.ndarray, omegaconf.listconfig.ListConfig)):
|
| 18 |
+
indices = X[col].isin(list(values))
|
| 19 |
+
else:
|
| 20 |
+
indices = X[col] == values
|
| 21 |
+
all_indices.append(indices)
|
| 22 |
+
# print(col, values, len(indices), sum(indices))
|
| 23 |
+
# X = X[indices]
|
| 24 |
+
if len(all_indices):
|
| 25 |
+
all_indices = np.array(all_indices)
|
| 26 |
+
indices = np.all(all_indices, axis=0)
|
| 27 |
+
X = X[indices]
|
| 28 |
+
|
| 29 |
+
if reset_index:
|
| 30 |
+
X = X.reset_index(drop=True)
|
| 31 |
+
|
| 32 |
+
return X
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def apply_antifilters(df: pd.DataFrame, filters: dict, reset_index=False):
|
| 36 |
+
"""
|
| 37 |
+
Filters df removing rows for given filters (key-values pairs).
|
| 38 |
+
"""
|
| 39 |
+
X = df.copy()
|
| 40 |
+
|
| 41 |
+
for col, values in filters.items():
|
| 42 |
+
if isinstance(values, (list, tuple, np.ndarray)):
|
| 43 |
+
indices = X[col].isin(list(values))
|
| 44 |
+
else:
|
| 45 |
+
indices = X[col] == values
|
| 46 |
+
X = X[~indices]
|
| 47 |
+
|
| 48 |
+
if reset_index:
|
| 49 |
+
X = X.reset_index(drop=True)
|
| 50 |
+
|
| 51 |
+
return X
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def custom_eval(x):
|
| 55 |
+
"""Splits string '["a", "b", "c"]' into ["a", "b", "c"]."""
|
| 56 |
+
if isinstance(x, str):
|
| 57 |
+
x = x.replace('[', '')
|
| 58 |
+
x = x.replace(']', '')
|
| 59 |
+
|
| 60 |
+
x = x.split(',')
|
| 61 |
+
x = [y.rstrip().lstrip() for y in x]
|
| 62 |
+
return x
|
| 63 |
+
else:
|
| 64 |
+
return ['NA']
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def split_column_into_columns(df, column):
|
| 68 |
+
"""
|
| 69 |
+
For given df, splits `column` containing values like '["a", "b"]'
|
| 70 |
+
into one-hot subcolumns like a. b with `Yes`/`No` values.
|
| 71 |
+
"""
|
| 72 |
+
df[column] = df[column].apply(custom_eval)
|
| 73 |
+
|
| 74 |
+
unique_values = []
|
| 75 |
+
for i in range(len(df)):
|
| 76 |
+
index = df.index[i]
|
| 77 |
+
|
| 78 |
+
list_of_values = df.loc[index, column]
|
| 79 |
+
|
| 80 |
+
for x in list_of_values:
|
| 81 |
+
if (x != 'NA') and (x != ''):
|
| 82 |
+
df.at[index, x] = 'Yes'
|
| 83 |
+
if x not in unique_values:
|
| 84 |
+
unique_values.append(x)
|
| 85 |
+
|
| 86 |
+
df[unique_values] = df[unique_values].fillna('No')
|
| 87 |
+
df[f'any_{column}'] = df[unique_values].apply(
|
| 88 |
+
lambda x: 'Yes' if 'Yes' in list(x) else 'No', axis=1
|
| 89 |
+
)
|
| 90 |
+
return df
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def custom_read_csv(path: str, columns_to_onehot: List) -> pd.DataFrame:
|
| 94 |
+
"""Custom CSV reader
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
path (str): path to .csv file
|
| 98 |
+
columns_to_onehot (List): list of columns to one-hotify
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
pd.DataFrame: loaded df
|
| 102 |
+
"""
|
| 103 |
+
df = pd.read_csv(path)
|
| 104 |
+
for column in columns_to_onehot:
|
| 105 |
+
df = split_column_into_columns(df, column)
|
| 106 |
+
return df
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def split_df(df, test_size=0.2):
|
| 110 |
+
from sklearn.model_selection import train_test_split
|
| 111 |
+
# split the dataframe into train and test sets
|
| 112 |
+
train_df, test_df = train_test_split(df, test_size=test_size, random_state=42)
|
| 113 |
+
|
| 114 |
+
# split the train set into train and validation sets
|
| 115 |
+
train_df, val_df = train_test_split(train_df, test_size=test_size, random_state=42)
|
| 116 |
+
|
| 117 |
+
return train_df, val_df, test_df
|
shared/utils/paths.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Path utils."""
|
| 2 |
+
from os.path import dirname, abspath
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
curr_filepath = abspath(__file__)
|
| 6 |
+
repo_path = dirname(dirname(dirname(curr_filepath)))
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def get_data_root_from_hostname():
|
| 10 |
+
import socket
|
| 11 |
+
|
| 12 |
+
data_root_lib = {
|
| 13 |
+
"diva": "/ssd/pbagad/datasets/",
|
| 14 |
+
"node": "/var/scratch/pbagad/datasets/",
|
| 15 |
+
"fs4": "/var/scratch/pbagad/datasets/",
|
| 16 |
+
"vggdev21": "/scratch/shared/beegfs/piyush/datasets/",
|
| 17 |
+
"node407": "/var/scratch/pbagad/datasets/",
|
| 18 |
+
"gnodee5": "/scratch/shared/beegfs/piyush/datasets/",
|
| 19 |
+
"gnodeg2": "/scratch/shared/beegfs/piyush/datasets/",
|
| 20 |
+
"gnodec2": "/scratch/shared/beegfs/piyush/datasets/",
|
| 21 |
+
"Piyushs-MacBook-Pro": "/Users/piyush/projects/",
|
| 22 |
+
"gnodec1": "/scratch/shared/beegfs/piyush/datasets/",
|
| 23 |
+
"gnodec5": "/scratch/shared/beegfs/piyush/datasets/",
|
| 24 |
+
"gnodec4": "/scratch/shared/beegfs/piyush/datasets/",
|
| 25 |
+
"gnoded2": "/scratch/shared/beegfs/piyush/datasets/",
|
| 26 |
+
}
|
| 27 |
+
hostname = socket.gethostname()
|
| 28 |
+
hostname = hostname.split(".")[0]
|
| 29 |
+
|
| 30 |
+
assert hostname in data_root_lib.keys(), \
|
| 31 |
+
"Hostname {} not in data_root_lib".format(hostname)
|
| 32 |
+
|
| 33 |
+
data_root = data_root_lib[hostname]
|
| 34 |
+
return data_root
|
| 35 |
+
|
shared/utils/physics.py
ADDED
|
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# Universal constants
|
| 6 |
+
C = 340. * 100. # Speed of sound in air (cm/s)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def compute_length_of_air_column_cylindrical(
|
| 10 |
+
timestamps, duration, height, b, **kwargs,
|
| 11 |
+
):
|
| 12 |
+
"""
|
| 13 |
+
Randomly chooses a l(t) curve satisfying the two point equations.
|
| 14 |
+
"""
|
| 15 |
+
L = height * ( (1 - np.exp(b * (duration - timestamps))) / (1 - np.exp(b * duration)) )
|
| 16 |
+
return L
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def compute_axial_frequency_cylindrical(
|
| 20 |
+
lengths, radius, beta=0.62, mode=1, **kwargs,
|
| 21 |
+
):
|
| 22 |
+
"""
|
| 23 |
+
Computes axial resonance frequency for cylindrical container at given timestamps.
|
| 24 |
+
"""
|
| 25 |
+
if mode == 1:
|
| 26 |
+
harmonic_weight = 1.
|
| 27 |
+
elif mode == 2:
|
| 28 |
+
harmonic_weight = 3.
|
| 29 |
+
elif mode == 3:
|
| 30 |
+
harmonic_weight = 5.
|
| 31 |
+
else:
|
| 32 |
+
raise ValueError
|
| 33 |
+
|
| 34 |
+
# Compute fundamental frequency curve
|
| 35 |
+
F0 = harmonic_weight * (0.25 * C) * (1. / (lengths + (beta * radius)))
|
| 36 |
+
|
| 37 |
+
return F0
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def compute_axial_frequency_bottleneck(
|
| 41 |
+
lengths, radius, height, Rn, Hn, beta_bottle=(0.6 + 8/np.pi), **kwargs,
|
| 42 |
+
):
|
| 43 |
+
# Here, R and H are base radius and height of the bottleneck
|
| 44 |
+
eps = 1e-6
|
| 45 |
+
kappa = (0.5 * C / np.pi) * (Rn/radius) * np.sqrt(1 / (Hn + beta_bottle * Rn))
|
| 46 |
+
frequencies = kappa * np.sqrt(1 / (lengths + eps))
|
| 47 |
+
return frequencies
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def compute_f0_cylindrical(Y, rho_g, a, R, H, mode=1, **kwargs,):
|
| 51 |
+
|
| 52 |
+
if mode == 1:
|
| 53 |
+
m = 1.875
|
| 54 |
+
n = 2
|
| 55 |
+
elif mode == 2:
|
| 56 |
+
m = 4.694
|
| 57 |
+
n = 3
|
| 58 |
+
elif mode == 3:
|
| 59 |
+
m = 7.855
|
| 60 |
+
n = 4
|
| 61 |
+
else:
|
| 62 |
+
raise ValueError
|
| 63 |
+
|
| 64 |
+
term = ( ((n**2 - 1)**2) + ((m * R/H)**4) ) / (1 + (1./n**2))
|
| 65 |
+
f0 = (1. / (12 * np.pi)) * np.sqrt(3 * Y / rho_g) * (a / (R**2)) * np.sqrt(term)
|
| 66 |
+
return f0
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def compute_xi_cylindrical(rho_l, rho_g, R, a, **kwargs,):
|
| 70 |
+
"""
|
| 71 |
+
Different papers use different multipliers.
|
| 72 |
+
For us, using 12. * (4./9.) works best empirically.
|
| 73 |
+
"""
|
| 74 |
+
xi = 12. * (4. / 9.) * (rho_l/rho_g) * (R/a)
|
| 75 |
+
return xi
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def compute_radial_frequency_cylindrical(
|
| 79 |
+
heights, R, H, Y, rho_g, a, rho_l, power=3, mode=1, **kwargs,
|
| 80 |
+
):
|
| 81 |
+
"""
|
| 82 |
+
Computes radial resonance frequency for cylindrical.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
heights (np.ndarray): height of liquid at pre-defined time stamps
|
| 86 |
+
"""
|
| 87 |
+
# Only f0 changes for higher modes
|
| 88 |
+
f0 = compute_f0_cylindrical(Y, rho_g, a, R, H, mode=mode)
|
| 89 |
+
xi = compute_xi_cylindrical(rho_l, rho_g, R, a)
|
| 90 |
+
frequencies = f0 / np.sqrt(1 + xi * ((heights/H) ** power) )
|
| 91 |
+
return frequencies
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def compute_slant_lengths_semiconical(
|
| 95 |
+
timestamps, duration, r_top, r_bot, height, **kwargs,
|
| 96 |
+
):
|
| 97 |
+
|
| 98 |
+
# Top radius / base radius
|
| 99 |
+
rf = r_bot / r_top
|
| 100 |
+
|
| 101 |
+
# Time fraction
|
| 102 |
+
tf = timestamps/duration
|
| 103 |
+
|
| 104 |
+
# Height fractions: h(t) / H
|
| 105 |
+
height_fractions = (1. / (rf - 1)) * (np.cbrt(((rf**3 - 1) * (tf)) + 1) - 1)
|
| 106 |
+
|
| 107 |
+
# Slant air column lengths
|
| 108 |
+
heights = height_fractions * height
|
| 109 |
+
slant_lengths = np.sqrt(1 - ((r_top - r_bot) / height)**2) * (height - heights)
|
| 110 |
+
|
| 111 |
+
return slant_lengths
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def compute_axial_frequency_semiconical(slant_lengths, r_top, r_bot, beta=1.28, **kwargs):
|
| 115 |
+
"""
|
| 116 |
+
Computes axial resonance frequency for cylinder.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
slant_lengths (np.ndarray): slant length of air column
|
| 120 |
+
r_top (float): top radius
|
| 121 |
+
r_bot (float): base radius
|
| 122 |
+
beta (float): end correction coefficient
|
| 123 |
+
"""
|
| 124 |
+
frequencies_axial = (C / 2) * (1 / (slant_lengths + (beta * (r_bot + r_top))))
|
| 125 |
+
return frequencies_axial
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def get_frequencies(
|
| 129 |
+
t,
|
| 130 |
+
params,
|
| 131 |
+
container_shape="cylindrical",
|
| 132 |
+
harmonic=None,
|
| 133 |
+
vibration_type="axial",
|
| 134 |
+
semiconical_as_cylinder=False,
|
| 135 |
+
):
|
| 136 |
+
"""
|
| 137 |
+
Computes requires frequency f(t) for given t.
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
if container_shape == "semiconical":
|
| 141 |
+
# Makes an assumption that semiconical shape is similar to cylindrical
|
| 142 |
+
if semiconical_as_cylinder:
|
| 143 |
+
container_shape = "cylindrical"
|
| 144 |
+
|
| 145 |
+
if (container_shape == "cylindrical") or (container_shape == "bottleneck_as_cylindrical"):
|
| 146 |
+
|
| 147 |
+
# Compute length of air column first
|
| 148 |
+
lengths = compute_length_of_air_column_cylindrical(t, **params)
|
| 149 |
+
|
| 150 |
+
if vibration_type == "axial":
|
| 151 |
+
frequencies = compute_axial_frequency_cylindrical(lengths, **params)
|
| 152 |
+
|
| 153 |
+
if harmonic is not None:
|
| 154 |
+
assert harmonic > 0 and isinstance(harmonic, int)
|
| 155 |
+
frequencies = frequencies * harmonic
|
| 156 |
+
|
| 157 |
+
elif vibration_type == "radial":
|
| 158 |
+
if harmonic is None:
|
| 159 |
+
mode = 1
|
| 160 |
+
else:
|
| 161 |
+
assert isinstance(harmonic, int)
|
| 162 |
+
assert harmonic in [1, 2]
|
| 163 |
+
mode = harmonic + 1
|
| 164 |
+
frequencies = compute_radial_frequency_cylindrical(
|
| 165 |
+
lengths, mode=mode, **params,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
else:
|
| 169 |
+
raise NotImplementedError
|
| 170 |
+
|
| 171 |
+
elif container_shape == "semiconical":
|
| 172 |
+
|
| 173 |
+
# Compute length of air column first
|
| 174 |
+
slant_lengths = compute_slant_lengths_semiconical(t, **params)
|
| 175 |
+
|
| 176 |
+
if vibration_type == "axial":
|
| 177 |
+
frequencies = compute_axial_frequency_semiconical(
|
| 178 |
+
slant_lengths, **params,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
if harmonic is not None:
|
| 182 |
+
assert harmonic > 0 and isinstance(harmonic, int)
|
| 183 |
+
frequencies = frequencies * harmonic
|
| 184 |
+
|
| 185 |
+
else:
|
| 186 |
+
raise NotImplementedError
|
| 187 |
+
|
| 188 |
+
elif container_shape == "bottleneck":
|
| 189 |
+
|
| 190 |
+
# Compute length of air column first assuming
|
| 191 |
+
# base of the bottle is a cylindrical
|
| 192 |
+
lengths = compute_length_of_air_column_cylindrical(t, **params)
|
| 193 |
+
|
| 194 |
+
if vibration_type == "axial":
|
| 195 |
+
frequencies = compute_axial_frequency_bottleneck(
|
| 196 |
+
lengths, **params,
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
if harmonic is not None:
|
| 200 |
+
assert harmonic > 0 and isinstance(harmonic, int)
|
| 201 |
+
frequencies = frequencies * harmonic
|
| 202 |
+
else:
|
| 203 |
+
raise NotImplementedError
|
| 204 |
+
|
| 205 |
+
else:
|
| 206 |
+
raise ValueError
|
| 207 |
+
|
| 208 |
+
return frequencies
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def get_params(row, semiconical_as_cylinder=False):
|
| 212 |
+
m = row["measurements"]
|
| 213 |
+
duration = row["end_time"] - row["start_time"]
|
| 214 |
+
params = dict(duration=duration)
|
| 215 |
+
if row["shape"] == "cylindrical":
|
| 216 |
+
radius = 0.25 * (m["diameter_top"] + m["diameter_bottom"])
|
| 217 |
+
height = m["net_height"]
|
| 218 |
+
params.update(
|
| 219 |
+
height=height,
|
| 220 |
+
radius=radius,
|
| 221 |
+
beta=row.get("beta", 0.62),
|
| 222 |
+
# Constant flow
|
| 223 |
+
b=0.01,
|
| 224 |
+
)
|
| 225 |
+
elif row["shape"] == "semiconical":
|
| 226 |
+
|
| 227 |
+
if semiconical_as_cylinder:
|
| 228 |
+
# Assume semiconical shape as cylindrical
|
| 229 |
+
radius = 0.25 * (m["diameter_top"] + m["diameter_bottom"])
|
| 230 |
+
height = m["net_height"]
|
| 231 |
+
params.update(
|
| 232 |
+
height=height,
|
| 233 |
+
radius=radius,
|
| 234 |
+
beta=0.62,
|
| 235 |
+
# Constant flow
|
| 236 |
+
b=0.01,
|
| 237 |
+
)
|
| 238 |
+
else:
|
| 239 |
+
r_top = 0.5 * m["diameter_top"]
|
| 240 |
+
r_bot = 0.5 * m["diameter_bottom"]
|
| 241 |
+
height = m["net_height"]
|
| 242 |
+
beta = 1.28
|
| 243 |
+
params.update(
|
| 244 |
+
r_top=r_top,
|
| 245 |
+
r_bot=r_bot,
|
| 246 |
+
height=height,
|
| 247 |
+
beta=beta,
|
| 248 |
+
)
|
| 249 |
+
elif row["shape"] == "bottleneck":
|
| 250 |
+
radius = 0.5 * m["diameter_bottom"]
|
| 251 |
+
Rn = 0.5 * m["diameter_top"]
|
| 252 |
+
Hn = m["neck_height"]
|
| 253 |
+
height = m["net_height"] - Hn
|
| 254 |
+
params.update(
|
| 255 |
+
height=height,
|
| 256 |
+
radius=radius,
|
| 257 |
+
Rn=Rn,
|
| 258 |
+
Hn=Hn,
|
| 259 |
+
# Constant flow
|
| 260 |
+
b=0.01,
|
| 261 |
+
)
|
| 262 |
+
elif row["shape"] == "bottleneck_as_cylindrical":
|
| 263 |
+
# Approximates bottleneck as cylindrical
|
| 264 |
+
radius = 0.5 * m["diameter_bottom"]
|
| 265 |
+
height = m["net_height"] + m["neck_height"]
|
| 266 |
+
params.update(
|
| 267 |
+
height=height,
|
| 268 |
+
radius=radius,
|
| 269 |
+
beta=row.get("beta", 0.62),
|
| 270 |
+
# Constant flow
|
| 271 |
+
b=0.01,
|
| 272 |
+
)
|
| 273 |
+
else:
|
| 274 |
+
raise ValueError
|
| 275 |
+
return params
|
| 276 |
+
|
| 277 |
+
def frequency_to_wavelength(f):
|
| 278 |
+
"""
|
| 279 |
+
Converts frequency to wavelength.
|
| 280 |
+
|
| 281 |
+
Args:
|
| 282 |
+
f (float): frequency
|
| 283 |
+
"""
|
| 284 |
+
return C / f
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def wavelength_to_frequency(l):
|
| 288 |
+
"""
|
| 289 |
+
Converts wavelength to frequency.
|
| 290 |
+
|
| 291 |
+
Args:
|
| 292 |
+
l (float): wavelength
|
| 293 |
+
"""
|
| 294 |
+
return C / l
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
def get_cylinder_radius(m):
|
| 298 |
+
return 0.25 * (m['diameter_top'] + m['diameter_bottom'])
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def get_cylinder_height(m):
|
| 302 |
+
return m['net_height']
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
def get_flow_rate(m, duration):
|
| 306 |
+
r = get_cylinder_radius(m)
|
| 307 |
+
h = get_cylinder_height(m)
|
| 308 |
+
volume = np.pi * (r**2) * h
|
| 309 |
+
q = volume / duration
|
| 310 |
+
return q
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def get_length_of_air_column(m, duration, timestamps):
|
| 314 |
+
h = get_cylinder_height(m)
|
| 315 |
+
l = (-h/duration) * timestamps + h
|
| 316 |
+
l = torch.from_numpy(l)
|
| 317 |
+
return l
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
def estimate_cylinder_radius(wavelengths, timestamps=None, beta=0.62):
|
| 321 |
+
radius_pred = ((1. / beta) * (wavelengths[-1] / 4.)).item()
|
| 322 |
+
return radius_pred
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def estimate_cylinder_height(wavelengths, timestamps=None, beta=0.62):
|
| 326 |
+
height_pred = wavelengths[0] / 4. - wavelengths[-1] / 4.
|
| 327 |
+
return height_pred.item()
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def estimate_flow_rate(wavelengths, timestamps=None, output_fps=49.):
|
| 331 |
+
radius = estimate_cylinder_radius(wavelengths)
|
| 332 |
+
l_pred = (wavelengths - wavelengths[-1]) / 4.
|
| 333 |
+
slope = np.gradient(l_pred).mean() * output_fps
|
| 334 |
+
Q_pred = -np.pi * (radius**2) * slope
|
| 335 |
+
return Q_pred
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
def estimate_length_of_air_column(wavelengths, timestamps=None):
|
| 339 |
+
l_pred = (wavelengths - wavelengths[-1]) / 4.
|
| 340 |
+
return l_pred
|
| 341 |
+
|
shared/utils/text_basic.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utils for processing and encoding text."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def lemmatize_verbs(verbs: list):
|
| 8 |
+
from nltk.stem import WordNetLemmatizer
|
| 9 |
+
wnl = WordNetLemmatizer()
|
| 10 |
+
return [wnl.lemmatize(verb, 'v') for verb in verbs]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def lemmatize_adverbs(adverbs: list):
|
| 14 |
+
from nltk.stem import WordNetLemmatizer
|
| 15 |
+
wnl = WordNetLemmatizer()
|
| 16 |
+
return [wnl.lemmatize(adverb, 'r') for adverb in adverbs]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class SentenceEncoder:
|
| 20 |
+
|
| 21 |
+
def __init__(self, model_name="roberta-base"):
|
| 22 |
+
from transformers import RobertaTokenizer, RobertaModel
|
| 23 |
+
if model_name == 'roberta-base':
|
| 24 |
+
self.tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
| 25 |
+
self.model = RobertaModel.from_pretrained(model_name)
|
| 26 |
+
|
| 27 |
+
def encode_sentence(self, sentence):
|
| 28 |
+
inputs = self.tokenizer.encode_plus(
|
| 29 |
+
sentence, add_special_tokens=True, return_tensors='pt',
|
| 30 |
+
)
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
outputs = self.model(**inputs)
|
| 33 |
+
# sentence_embedding = torch.mean(outputs.last_hidden_state, dim=1).squeeze(0)
|
| 34 |
+
sentence_embedding = outputs.last_hidden_state[:, 0, :]
|
| 35 |
+
return sentence_embedding
|
| 36 |
+
|
| 37 |
+
def encode_sentences(self, sentences):
|
| 38 |
+
"""Encodes a list of sentences using model."""
|
| 39 |
+
tokenized_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
outputs = self.model(**tokenized_input)
|
| 42 |
+
embeddings = outputs.last_hidden_state[:, 0, :]
|
| 43 |
+
return embeddings
|
| 44 |
+
|
shared/utils/visualize.py
ADDED
|
@@ -0,0 +1,2208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Helpers for visualization"""
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import cv2
|
| 7 |
+
import PIL
|
| 8 |
+
from PIL import Image, ImageOps, ImageDraw
|
| 9 |
+
from os.path import exists
|
| 10 |
+
import librosa.display
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import itertools
|
| 13 |
+
import librosa
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
from IPython.display import Audio, Markdown, display
|
| 16 |
+
from ipywidgets import Button, HBox, VBox, Text, Label, HTML, widgets
|
| 17 |
+
from shared.utils.log import tqdm_iterator
|
| 18 |
+
|
| 19 |
+
import warnings
|
| 20 |
+
warnings.filterwarnings("ignore")
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
import torchvideotransforms
|
| 24 |
+
except:
|
| 25 |
+
print("Failed to import torchvideotransforms. Proceeding without.")
|
| 26 |
+
print("Please install using:")
|
| 27 |
+
print("pip install git+https://github.com/hassony2/torch_videovision")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# define predominanat colors
|
| 31 |
+
COLORS = {
|
| 32 |
+
"pink": (242, 116, 223),
|
| 33 |
+
"cyan": (46, 242, 203),
|
| 34 |
+
"red": (255, 0, 0),
|
| 35 |
+
"green": (0, 255, 0),
|
| 36 |
+
"blue": (0, 0, 255),
|
| 37 |
+
"yellow": (255, 255, 0),
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def get_predominant_color(color_key, mode="RGB", alpha=0):
|
| 42 |
+
assert color_key in COLORS.keys(), f"Unknown color key: {color_key}"
|
| 43 |
+
if mode == "RGB":
|
| 44 |
+
return COLORS[color_key]
|
| 45 |
+
elif mode == "RGBA":
|
| 46 |
+
return COLORS[color_key] + (alpha,)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def show_single_image(image: np.ndarray, figsize: tuple = (8, 8), title: str = None, cmap: str = None, ticks=False):
|
| 50 |
+
"""Show a single image."""
|
| 51 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
| 52 |
+
|
| 53 |
+
if isinstance(image, Image.Image):
|
| 54 |
+
image = np.asarray(image)
|
| 55 |
+
|
| 56 |
+
ax.set_title(title)
|
| 57 |
+
ax.imshow(image, cmap=cmap)
|
| 58 |
+
|
| 59 |
+
if not ticks:
|
| 60 |
+
ax.set_xticks([])
|
| 61 |
+
ax.set_yticks([])
|
| 62 |
+
|
| 63 |
+
plt.show()
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def show_grid_of_images(
|
| 67 |
+
images: np.ndarray, n_cols: int = 4, figsize: tuple = (8, 8), subtitlesize=14,
|
| 68 |
+
cmap=None, subtitles=None, title=None, save=False, savepath="sample.png", titlesize=20,
|
| 69 |
+
ysuptitle=0.8, xlabels=None, sizealpha=0.7, show=True, row_labels=None, aspect=None,
|
| 70 |
+
):
|
| 71 |
+
"""Show a grid of images."""
|
| 72 |
+
n_cols = min(n_cols, len(images))
|
| 73 |
+
|
| 74 |
+
copy_of_images = images.copy()
|
| 75 |
+
for i, image in enumerate(copy_of_images):
|
| 76 |
+
if isinstance(image, Image.Image):
|
| 77 |
+
image = np.asarray(image)
|
| 78 |
+
copy_of_images[i] = image
|
| 79 |
+
|
| 80 |
+
if subtitles is None:
|
| 81 |
+
subtitles = [None] * len(images)
|
| 82 |
+
|
| 83 |
+
if xlabels is None:
|
| 84 |
+
xlabels = [None] * len(images)
|
| 85 |
+
|
| 86 |
+
if row_labels is None:
|
| 87 |
+
num_rows = int(np.ceil(len(images) / n_cols))
|
| 88 |
+
row_labels = [None] * num_rows
|
| 89 |
+
|
| 90 |
+
n_rows = int(np.ceil(len(images) / n_cols))
|
| 91 |
+
fig, axes = plt.subplots(n_rows, n_cols, figsize=figsize)
|
| 92 |
+
if len(images) == 1:
|
| 93 |
+
axes = np.array([[axes]])
|
| 94 |
+
for i, ax in enumerate(axes.flat):
|
| 95 |
+
if i < len(copy_of_images):
|
| 96 |
+
if len(copy_of_images[i].shape) == 2 and cmap is None:
|
| 97 |
+
cmap="gray"
|
| 98 |
+
ax.imshow(copy_of_images[i], cmap=cmap, aspect=aspect)
|
| 99 |
+
ax.set_title(subtitles[i], fontsize=subtitlesize)
|
| 100 |
+
ax.set_xlabel(xlabels[i], fontsize=sizealpha * subtitlesize)
|
| 101 |
+
ax.set_xticks([])
|
| 102 |
+
ax.set_yticks([])
|
| 103 |
+
|
| 104 |
+
col_idx = i % n_cols
|
| 105 |
+
if col_idx == 0:
|
| 106 |
+
ax.set_ylabel(row_labels[i // n_cols], fontsize=sizealpha * subtitlesize)
|
| 107 |
+
|
| 108 |
+
fig.tight_layout()
|
| 109 |
+
plt.suptitle(title, y=ysuptitle, fontsize=titlesize)
|
| 110 |
+
if save:
|
| 111 |
+
plt.savefig(savepath, bbox_inches='tight')
|
| 112 |
+
if show:
|
| 113 |
+
plt.show()
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def add_text_to_image(image, text):
|
| 118 |
+
from PIL import ImageFont
|
| 119 |
+
from PIL import ImageDraw
|
| 120 |
+
|
| 121 |
+
# # resize image
|
| 122 |
+
# image = image.resize((image.size[0] * 2, image.size[1] * 2))
|
| 123 |
+
|
| 124 |
+
draw = ImageDraw.Draw(image)
|
| 125 |
+
font = ImageFont.load_default()
|
| 126 |
+
# font = ImageFont.load("arial.pil")
|
| 127 |
+
# font = ImageFont.FreeTypeFont(size=20)
|
| 128 |
+
# font = ImageFont.truetype("arial.ttf", 28, encoding="unic")
|
| 129 |
+
|
| 130 |
+
# change fontsize
|
| 131 |
+
|
| 132 |
+
# select color = black if image is mostly white
|
| 133 |
+
if np.mean(image) > 200:
|
| 134 |
+
draw.text((0, 0), text, (0,0,0), font=font)
|
| 135 |
+
else:
|
| 136 |
+
draw.text((0, 0), text, (255,255,255), font=font)
|
| 137 |
+
|
| 138 |
+
# draw.text((0, 0), text, (255,255,255), font=font)
|
| 139 |
+
return image
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def show_keypoint_matches(
|
| 143 |
+
img1, kp1, img2, kp2, matches,
|
| 144 |
+
K=10, figsize=(10, 5), drawMatches_args=dict(matchesThickness=3, singlePointColor=(0, 0, 0)),
|
| 145 |
+
choose_matches="random",
|
| 146 |
+
):
|
| 147 |
+
"""Displays matches found in the pair of images"""
|
| 148 |
+
if choose_matches == "random":
|
| 149 |
+
selected_matches = np.random.choice(matches, K)
|
| 150 |
+
elif choose_matches == "all":
|
| 151 |
+
K = len(matches)
|
| 152 |
+
selected_matches = matches
|
| 153 |
+
elif choose_matches == "topk":
|
| 154 |
+
selected_matches = matches[:K]
|
| 155 |
+
else:
|
| 156 |
+
raise ValueError(f"Unknown value for choose_matches: {choose_matches}")
|
| 157 |
+
|
| 158 |
+
# color each match with a different color
|
| 159 |
+
cmap = matplotlib.cm.get_cmap('gist_rainbow', K)
|
| 160 |
+
colors = [[int(x*255) for x in cmap(i)[:3]] for i in np.arange(0,K)]
|
| 161 |
+
drawMatches_args.update({"matchColor": -1, "singlePointColor": (100, 100, 100)})
|
| 162 |
+
|
| 163 |
+
img3 = cv2.drawMatches(img1, kp1, img2, kp2, selected_matches, outImg=None, **drawMatches_args)
|
| 164 |
+
show_single_image(
|
| 165 |
+
img3,
|
| 166 |
+
figsize=figsize,
|
| 167 |
+
title=f"[{choose_matches.upper()}] Selected K = {K} matches between the pair of images.",
|
| 168 |
+
)
|
| 169 |
+
return img3
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def draw_kps_on_image(image: np.ndarray, kps: np.ndarray, color=COLORS["red"], radius=3, thickness=-1, return_as="PIL"):
|
| 173 |
+
"""
|
| 174 |
+
Draw keypoints on image.
|
| 175 |
+
|
| 176 |
+
Args:
|
| 177 |
+
image: Image to draw keypoints on.
|
| 178 |
+
kps: Keypoints to draw. Note these should be in (x, y) format.
|
| 179 |
+
"""
|
| 180 |
+
if isinstance(image, Image.Image):
|
| 181 |
+
image = np.asarray(image)
|
| 182 |
+
if isinstance(color, str):
|
| 183 |
+
color = PIL.ImageColor.getrgb(color)
|
| 184 |
+
colors = [color] * len(kps)
|
| 185 |
+
elif isinstance(color, tuple):
|
| 186 |
+
colors = [color] * len(kps)
|
| 187 |
+
elif isinstance(color, list):
|
| 188 |
+
colors = [PIL.ImageColor.getrgb(c) for c in color]
|
| 189 |
+
assert len(colors) == len(kps), f"Number of colors ({len(colors)}) must be equal to number of keypoints ({len(kps)})"
|
| 190 |
+
|
| 191 |
+
for kp, c in zip(kps, colors):
|
| 192 |
+
image = cv2.circle(
|
| 193 |
+
image.copy(), (int(kp[0]), int(kp[1])), radius=radius, color=c, thickness=thickness)
|
| 194 |
+
|
| 195 |
+
if return_as == "PIL":
|
| 196 |
+
return Image.fromarray(image)
|
| 197 |
+
|
| 198 |
+
return image
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def get_concat_h(im1, im2):
|
| 202 |
+
"""Concatenate two images horizontally"""
|
| 203 |
+
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
|
| 204 |
+
dst.paste(im1, (0, 0))
|
| 205 |
+
dst.paste(im2, (im1.width, 0))
|
| 206 |
+
return dst
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def get_concat_v(im1, im2):
|
| 210 |
+
"""Concatenate two images vertically"""
|
| 211 |
+
dst = Image.new('RGB', (im1.width, im1.height + im2.height))
|
| 212 |
+
dst.paste(im1, (0, 0))
|
| 213 |
+
dst.paste(im2, (0, im1.height))
|
| 214 |
+
return dst
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def show_images_with_keypoints(images: list, kps: list, radius=15, color=(0, 220, 220), figsize=(10, 8)):
|
| 218 |
+
assert len(images) == len(kps)
|
| 219 |
+
|
| 220 |
+
# generate
|
| 221 |
+
images_with_kps = []
|
| 222 |
+
for i in range(len(images)):
|
| 223 |
+
img_with_kps = draw_kps_on_image(images[i], kps[i], radius=radius, color=color, return_as="PIL")
|
| 224 |
+
images_with_kps.append(img_with_kps)
|
| 225 |
+
|
| 226 |
+
# show
|
| 227 |
+
show_grid_of_images(images_with_kps, n_cols=len(images), figsize=figsize)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def set_latex_fonts(usetex=True, fontsize=14, show_sample=False, **kwargs):
|
| 231 |
+
try:
|
| 232 |
+
plt.rcParams.update({
|
| 233 |
+
"text.usetex": usetex,
|
| 234 |
+
"font.family": "serif",
|
| 235 |
+
# "font.serif": ["Computer Modern Romans"],
|
| 236 |
+
"font.size": fontsize,
|
| 237 |
+
**kwargs,
|
| 238 |
+
})
|
| 239 |
+
if show_sample:
|
| 240 |
+
plt.figure()
|
| 241 |
+
plt.title("Sample $y = x^2$")
|
| 242 |
+
plt.plot(np.arange(0, 10), np.arange(0, 10)**2, "--o")
|
| 243 |
+
plt.grid()
|
| 244 |
+
plt.show()
|
| 245 |
+
except:
|
| 246 |
+
print("Failed to setup LaTeX fonts. Proceeding without.")
|
| 247 |
+
pass
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def plot_2d_points(
|
| 252 |
+
list_of_points_2d,
|
| 253 |
+
colors=None,
|
| 254 |
+
sizes=None,
|
| 255 |
+
markers=None,
|
| 256 |
+
alpha=0.75,
|
| 257 |
+
h=256,
|
| 258 |
+
w=256,
|
| 259 |
+
ax=None,
|
| 260 |
+
save=True,
|
| 261 |
+
savepath="test.png",
|
| 262 |
+
):
|
| 263 |
+
|
| 264 |
+
if ax is None:
|
| 265 |
+
fig, ax = plt.subplots(1, 1)
|
| 266 |
+
ax.set_xlim([0, w])
|
| 267 |
+
ax.set_ylim([0, h])
|
| 268 |
+
|
| 269 |
+
if sizes is None:
|
| 270 |
+
sizes = [0.1 for _ in range(len(list_of_points_2d))]
|
| 271 |
+
if colors is None:
|
| 272 |
+
colors = ["gray" for _ in range(len(list_of_points_2d))]
|
| 273 |
+
if markers is None:
|
| 274 |
+
markers = ["o" for _ in range(len(list_of_points_2d))]
|
| 275 |
+
|
| 276 |
+
for points_2d, color, s, m in zip(list_of_points_2d, colors, sizes, markers):
|
| 277 |
+
ax.scatter(points_2d[:, 0], points_2d[:, 1], s=s, alpha=alpha, color=color, marker=m)
|
| 278 |
+
|
| 279 |
+
if save:
|
| 280 |
+
plt.savefig(savepath, bbox_inches='tight')
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def plot_2d_points_on_image(
|
| 284 |
+
image,
|
| 285 |
+
img_alpha=1.0,
|
| 286 |
+
ax=None,
|
| 287 |
+
list_of_points_2d=[],
|
| 288 |
+
scatter_args=dict(),
|
| 289 |
+
):
|
| 290 |
+
if ax is None:
|
| 291 |
+
fig, ax = plt.subplots(1, 1)
|
| 292 |
+
ax.imshow(image, alpha=img_alpha)
|
| 293 |
+
scatter_args["save"] = False
|
| 294 |
+
plot_2d_points(list_of_points_2d, ax=ax, **scatter_args)
|
| 295 |
+
|
| 296 |
+
# invert the axis
|
| 297 |
+
ax.set_ylim(ax.get_ylim()[::-1])
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def compare_landmarks(
|
| 301 |
+
image, ground_truth_landmarks, v2d, predicted_landmarks,
|
| 302 |
+
save=False, savepath="compare_landmarks.png", num_kps_to_show=-1,
|
| 303 |
+
show_matches=True,
|
| 304 |
+
):
|
| 305 |
+
|
| 306 |
+
# show GT landmarks on image
|
| 307 |
+
fig, axes = plt.subplots(1, 3, figsize=(11, 4))
|
| 308 |
+
ax = axes[0]
|
| 309 |
+
plot_2d_points_on_image(
|
| 310 |
+
image,
|
| 311 |
+
list_of_points_2d=[ground_truth_landmarks],
|
| 312 |
+
scatter_args=dict(sizes=[15], colors=["limegreen"]),
|
| 313 |
+
ax=ax,
|
| 314 |
+
)
|
| 315 |
+
ax.set_title("GT landmarks", fontsize=12)
|
| 316 |
+
|
| 317 |
+
# since the projected points are inverted, using 180 degree rotation about z-axis
|
| 318 |
+
ax = axes[1]
|
| 319 |
+
plot_2d_points_on_image(
|
| 320 |
+
image,
|
| 321 |
+
list_of_points_2d=[v2d, predicted_landmarks],
|
| 322 |
+
scatter_args=dict(sizes=[0.08, 15], markers=["o", "x"], colors=["royalblue", "red"]),
|
| 323 |
+
ax=ax,
|
| 324 |
+
)
|
| 325 |
+
ax.set_title("Projection of predicted mesh", fontsize=12)
|
| 326 |
+
|
| 327 |
+
# plot the ground truth and predicted landmarks on the same image
|
| 328 |
+
ax = axes[2]
|
| 329 |
+
plot_2d_points_on_image(
|
| 330 |
+
image,
|
| 331 |
+
list_of_points_2d=[
|
| 332 |
+
ground_truth_landmarks[:num_kps_to_show],
|
| 333 |
+
predicted_landmarks[:num_kps_to_show],
|
| 334 |
+
],
|
| 335 |
+
scatter_args=dict(sizes=[15, 15], markers=["o", "x"], colors=["limegreen", "red"]),
|
| 336 |
+
ax=ax,
|
| 337 |
+
img_alpha=0.5,
|
| 338 |
+
)
|
| 339 |
+
ax.set_title("GT and predicted landmarks", fontsize=12)
|
| 340 |
+
|
| 341 |
+
if show_matches:
|
| 342 |
+
for i in range(num_kps_to_show):
|
| 343 |
+
x_values = [ground_truth_landmarks[i, 0], predicted_landmarks[i, 0]]
|
| 344 |
+
y_values = [ground_truth_landmarks[i, 1], predicted_landmarks[i, 1]]
|
| 345 |
+
ax.plot(x_values, y_values, color="yellow", markersize=1, linewidth=2.)
|
| 346 |
+
|
| 347 |
+
fig.tight_layout()
|
| 348 |
+
if save:
|
| 349 |
+
plt.savefig(savepath, bbox_inches="tight")
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
def plot_historgam_values(
|
| 354 |
+
X, display_vals=False,
|
| 355 |
+
bins=50, figsize=(8, 5),
|
| 356 |
+
show_mean=True,
|
| 357 |
+
xlabel=None, ylabel=None,
|
| 358 |
+
ax=None, title=None, show=False,
|
| 359 |
+
**kwargs,
|
| 360 |
+
):
|
| 361 |
+
if ax is None:
|
| 362 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
| 363 |
+
|
| 364 |
+
ax.hist(X, bins=bins, **kwargs)
|
| 365 |
+
if title is None:
|
| 366 |
+
title = "Histogram of values"
|
| 367 |
+
|
| 368 |
+
ax.set_xlabel(xlabel)
|
| 369 |
+
ax.set_ylabel(ylabel)
|
| 370 |
+
|
| 371 |
+
if display_vals:
|
| 372 |
+
x, counts = np.unique(X, return_counts=True)
|
| 373 |
+
# sort_indices = np.argsort(x)
|
| 374 |
+
# x = x[sort_indices]
|
| 375 |
+
# counts = counts[sort_indices]
|
| 376 |
+
# for i in range(len(x)):
|
| 377 |
+
# ax.text(x[i], counts[i], counts[i], ha='center', va='bottom')
|
| 378 |
+
|
| 379 |
+
ax.grid(alpha=0.3)
|
| 380 |
+
|
| 381 |
+
if show_mean:
|
| 382 |
+
mean = np.mean(X)
|
| 383 |
+
mean_string = f"$\mu$: {mean:.2f}"
|
| 384 |
+
ax.set_title(title + f" ({mean_string}) ")
|
| 385 |
+
else:
|
| 386 |
+
ax.set_title(title)
|
| 387 |
+
|
| 388 |
+
if not show:
|
| 389 |
+
return ax
|
| 390 |
+
else:
|
| 391 |
+
plt.show()
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
"""Helper functions for all kinds of 2D/3D visualization"""
|
| 395 |
+
def bokeh_2d_scatter(x, y, desc, figsize=(700, 700), colors=None, use_nb=False, title="Bokeh scatter plot"):
|
| 396 |
+
import matplotlib.colors as mcolors
|
| 397 |
+
from bokeh.plotting import figure, output_file, show, ColumnDataSource
|
| 398 |
+
from bokeh.models import HoverTool
|
| 399 |
+
from bokeh.io import output_notebook
|
| 400 |
+
|
| 401 |
+
if use_nb:
|
| 402 |
+
output_notebook()
|
| 403 |
+
|
| 404 |
+
# define colors to be assigned
|
| 405 |
+
if colors is None:
|
| 406 |
+
# applies the same color
|
| 407 |
+
# create a color iterator: pick a random color and apply it to all points
|
| 408 |
+
# colors = [np.random.choice(itertools.cycle(palette))] * len(x)
|
| 409 |
+
colors = [np.random.choice(["red", "green", "blue", "yellow", "pink", "black", "gray"])] * len(x)
|
| 410 |
+
|
| 411 |
+
# # applies different colors
|
| 412 |
+
# colors = np.array([ [r, g, 150] for r, g in zip(50 + 2*x, 30 + 2*y) ], dtype="uint8")
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
# define the df of data to plot
|
| 416 |
+
source = ColumnDataSource(
|
| 417 |
+
data=dict(
|
| 418 |
+
x=x,
|
| 419 |
+
y=y,
|
| 420 |
+
desc=desc,
|
| 421 |
+
color=colors,
|
| 422 |
+
)
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
# define the attributes to show on hover
|
| 426 |
+
hover = HoverTool(
|
| 427 |
+
tooltips=[
|
| 428 |
+
("index", "$index"),
|
| 429 |
+
("(x, y)", "($x, $y)"),
|
| 430 |
+
("Desc", "@desc"),
|
| 431 |
+
]
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
p = figure(
|
| 435 |
+
plot_width=figsize[0], plot_height=figsize[1], tools=[hover], title=title,
|
| 436 |
+
)
|
| 437 |
+
p.circle('x', 'y', size=10, source=source, fill_color="color")
|
| 438 |
+
show(p)
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
def bokeh_2d_scatter_new(
|
| 444 |
+
df, x, y, hue, label, color_column=None, size_col=None,
|
| 445 |
+
figsize=(700, 700), use_nb=False, title="Bokeh scatter plot",
|
| 446 |
+
legend_loc="bottom_left", edge_color="black", audio_col=None,
|
| 447 |
+
):
|
| 448 |
+
from bokeh.plotting import figure, output_file, show, ColumnDataSource
|
| 449 |
+
from bokeh.models import HoverTool
|
| 450 |
+
from bokeh.io import output_notebook
|
| 451 |
+
|
| 452 |
+
if use_nb:
|
| 453 |
+
output_notebook()
|
| 454 |
+
|
| 455 |
+
assert {x, y, hue, label}.issubset(set(df.keys()))
|
| 456 |
+
|
| 457 |
+
if isinstance(color_column, str) and color_column in df.keys():
|
| 458 |
+
color_column_name = color_column
|
| 459 |
+
else:
|
| 460 |
+
import matplotlib.colors as mcolors
|
| 461 |
+
colors = list(mcolors.BASE_COLORS.keys()) + list(mcolors.TABLEAU_COLORS.values())
|
| 462 |
+
# colors = list(mcolors.BASE_COLORS.keys())
|
| 463 |
+
colors = itertools.cycle(np.unique(colors))
|
| 464 |
+
|
| 465 |
+
hue_to_color = dict()
|
| 466 |
+
unique_hues = np.unique(df[hue].values)
|
| 467 |
+
for _hue in unique_hues:
|
| 468 |
+
hue_to_color[_hue] = next(colors)
|
| 469 |
+
df["color"] = df[hue].apply(lambda k: hue_to_color[k])
|
| 470 |
+
color_column_name = "color"
|
| 471 |
+
|
| 472 |
+
if size_col is not None:
|
| 473 |
+
assert isinstance(size_col, str) and size_col in df.keys()
|
| 474 |
+
else:
|
| 475 |
+
sizes = [10.] * len(df)
|
| 476 |
+
df["size"] = sizes
|
| 477 |
+
size_col = "size"
|
| 478 |
+
|
| 479 |
+
source = ColumnDataSource(
|
| 480 |
+
dict(
|
| 481 |
+
x = df[x].values,
|
| 482 |
+
y = df[y].values,
|
| 483 |
+
hue = df[hue].values,
|
| 484 |
+
label = df[label].values,
|
| 485 |
+
color = df[color_column_name].values,
|
| 486 |
+
edge_color = [edge_color] * len(df),
|
| 487 |
+
sizes = df[size_col].values,
|
| 488 |
+
)
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
# define the attributes to show on hover
|
| 492 |
+
hover = HoverTool(
|
| 493 |
+
tooltips=[
|
| 494 |
+
("index", "$index"),
|
| 495 |
+
("(x, y)", "($x, $y)"),
|
| 496 |
+
("Desc", "@label"),
|
| 497 |
+
("Cluster", "@hue"),
|
| 498 |
+
]
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
p = figure(
|
| 502 |
+
plot_width=figsize[0],
|
| 503 |
+
plot_height=figsize[1],
|
| 504 |
+
tools=["pan","wheel_zoom","box_zoom","save","reset","help"] + [hover],
|
| 505 |
+
title=title,
|
| 506 |
+
)
|
| 507 |
+
p.circle(
|
| 508 |
+
'x', 'y', size="sizes",
|
| 509 |
+
source=source, fill_color="color",
|
| 510 |
+
legend_group="hue", line_color="edge_color",
|
| 511 |
+
)
|
| 512 |
+
p.legend.location = legend_loc
|
| 513 |
+
p.legend.click_policy="hide"
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
show(p)
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
import torch
|
| 520 |
+
def get_sentence_embedding(model, tokenizer, sentence):
|
| 521 |
+
encoded = tokenizer.encode_plus(sentence, return_tensors="pt")
|
| 522 |
+
|
| 523 |
+
with torch.no_grad():
|
| 524 |
+
output = model(**encoded)
|
| 525 |
+
|
| 526 |
+
last_hidden_state = output.last_hidden_state
|
| 527 |
+
assert last_hidden_state.shape[0] == 1
|
| 528 |
+
assert last_hidden_state.shape[-1] == 768
|
| 529 |
+
|
| 530 |
+
# only pick the [CLS] token embedding (sentence embedding)
|
| 531 |
+
sentence_embedding = last_hidden_state[0, 0]
|
| 532 |
+
|
| 533 |
+
return sentence_embedding
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
def lighten_color(color, amount=0.5):
|
| 537 |
+
"""
|
| 538 |
+
Lightens the given color by multiplying (1-luminosity) by the given amount.
|
| 539 |
+
Input can be matplotlib color string, hex string, or RGB tuple.
|
| 540 |
+
|
| 541 |
+
Examples:
|
| 542 |
+
>> lighten_color('g', 0.3)
|
| 543 |
+
>> lighten_color('#F034A3', 0.6)
|
| 544 |
+
>> lighten_color((.3,.55,.1), 0.5)
|
| 545 |
+
"""
|
| 546 |
+
import matplotlib.colors as mc
|
| 547 |
+
import colorsys
|
| 548 |
+
try:
|
| 549 |
+
c = mc.cnames[color]
|
| 550 |
+
except:
|
| 551 |
+
c = color
|
| 552 |
+
c = colorsys.rgb_to_hls(*mc.to_rgb(c))
|
| 553 |
+
return colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2])
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
def plot_histogram(df, col, ax=None, color="blue", title=None, xlabel=None, **kwargs):
|
| 557 |
+
if ax is None:
|
| 558 |
+
fig, ax = plt.subplots(1, 1, figsize=(5, 4))
|
| 559 |
+
ax.grid(alpha=0.3)
|
| 560 |
+
xlabel = col if xlabel is None else xlabel
|
| 561 |
+
ax.set_xlabel(xlabel)
|
| 562 |
+
ax.set_ylabel("Frequency")
|
| 563 |
+
title = f"Historgam of {col}" if title is None else title
|
| 564 |
+
ax.set_title(title)
|
| 565 |
+
label = f"Mean: {np.round(df[col].mean(), 1)}"
|
| 566 |
+
ax.hist(df[col].values, density=False, color=color, edgecolor=lighten_color(color, 0.1), label=label, **kwargs)
|
| 567 |
+
if "bins" in kwargs:
|
| 568 |
+
xticks = list(np.arange(kwargs["bins"])[::5])
|
| 569 |
+
xticks += list(np.linspace(xticks[-1], int(df[col].max()), 5, dtype=int))
|
| 570 |
+
# print(xticks)
|
| 571 |
+
ax.set_xticks(xticks)
|
| 572 |
+
ax.legend()
|
| 573 |
+
plt.show()
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
def beautify_ax(ax, title=None, titlesize=20, sizealpha=0.7, xlabel=None, ylabel=None):
|
| 577 |
+
labelsize = sizealpha * titlesize
|
| 578 |
+
ax.grid(alpha=0.3)
|
| 579 |
+
ax.set_xlabel(xlabel, fontsize=labelsize)
|
| 580 |
+
ax.set_ylabel(ylabel, fontsize=labelsize)
|
| 581 |
+
ax.set_title(title, fontsize=titlesize)
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
def get_text_features(text: list, model, device, batch_size=16):
|
| 587 |
+
import clip
|
| 588 |
+
text_batches = [text[i:i+batch_size] for i in range(0, len(text), batch_size)]
|
| 589 |
+
text_features = []
|
| 590 |
+
model = model.to(device)
|
| 591 |
+
model = model.eval()
|
| 592 |
+
for batch in tqdm(text_batches, desc="Getting text features", bar_format="{l_bar}{bar:20}{r_bar}"):
|
| 593 |
+
batch = clip.tokenize(batch).to(device)
|
| 594 |
+
with torch.no_grad():
|
| 595 |
+
batch_features = model.encode_text(batch)
|
| 596 |
+
text_features.append(batch_features.cpu().numpy())
|
| 597 |
+
text_features = np.concatenate(text_features, axis=0)
|
| 598 |
+
return text_features
|
| 599 |
+
|
| 600 |
+
|
| 601 |
+
from sklearn.manifold import TSNE
|
| 602 |
+
def reduce_dim(X, perplexity=30, n_iter=1000):
|
| 603 |
+
tsne = TSNE(
|
| 604 |
+
n_components=2,
|
| 605 |
+
perplexity=perplexity,
|
| 606 |
+
n_iter=n_iter,
|
| 607 |
+
init='pca',
|
| 608 |
+
# learning_rate="auto",
|
| 609 |
+
)
|
| 610 |
+
Z = tsne.fit_transform(X)
|
| 611 |
+
return Z
|
| 612 |
+
|
| 613 |
+
|
| 614 |
+
from IPython.display import Video
|
| 615 |
+
def show_video(video_path):
|
| 616 |
+
"""Show a video in a Jupyter notebook"""
|
| 617 |
+
assert exists(video_path), f"Video path {video_path} does not exist"
|
| 618 |
+
|
| 619 |
+
# display the video in a Jupyter notebook
|
| 620 |
+
return Video(video_path, embed=True, width=480)
|
| 621 |
+
# Video(video_path, embed=True, width=600, height=400)
|
| 622 |
+
# html_attributes="controls autoplay loop muted"
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
def show_single_audio(filepath=None, data=None, rate=None, start=None, end=None, label="Sample audio"):
|
| 628 |
+
|
| 629 |
+
if filepath is None:
|
| 630 |
+
assert data is not None and rate is not None, "Either filepath or data and rate must be provided"
|
| 631 |
+
args = dict(data=data, rate=rate)
|
| 632 |
+
else:
|
| 633 |
+
assert data is None and rate is None, "Either filepath or data and rate must be provided"
|
| 634 |
+
data, rate = librosa.load(filepath)
|
| 635 |
+
# args = dict(filename=filepath)
|
| 636 |
+
args = dict(data=data, rate=rate)
|
| 637 |
+
|
| 638 |
+
if start is not None and end is not None:
|
| 639 |
+
start = max(int(start * rate), 0)
|
| 640 |
+
end = min(int(end * rate), len(data))
|
| 641 |
+
else:
|
| 642 |
+
start = 0
|
| 643 |
+
end = len(data)
|
| 644 |
+
data = data[start:end]
|
| 645 |
+
args["data"] = data
|
| 646 |
+
|
| 647 |
+
if label is None:
|
| 648 |
+
label = "Sample audio"
|
| 649 |
+
|
| 650 |
+
label = Label(f"{label}")
|
| 651 |
+
out = widgets.Output()
|
| 652 |
+
with out:
|
| 653 |
+
display(Audio(**args))
|
| 654 |
+
vbox = VBox([label, out])
|
| 655 |
+
return vbox
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
def show_single_audio_with_spectrogram(filepath=None, data=None, rate=None, label="Sample audio", figsize=(6, 2)):
|
| 659 |
+
|
| 660 |
+
if filepath is None:
|
| 661 |
+
assert data is not None and rate is not None, "Either filepath or data and rate must be provided"
|
| 662 |
+
else:
|
| 663 |
+
data, rate = librosa.load(filepath)
|
| 664 |
+
|
| 665 |
+
# Show audio
|
| 666 |
+
vbox = show_single_audio(data=data, rate=rate, label=label)
|
| 667 |
+
# get width of audio widget
|
| 668 |
+
width = vbox.children[1].layout.width
|
| 669 |
+
|
| 670 |
+
# Show spectrogram
|
| 671 |
+
spec_out = widgets.Output()
|
| 672 |
+
D = librosa.stft(data) # STFT of y
|
| 673 |
+
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
| 674 |
+
with spec_out:
|
| 675 |
+
fig, ax = plt.subplots(figsize=figsize)
|
| 676 |
+
img = librosa.display.specshow(
|
| 677 |
+
S_db,
|
| 678 |
+
ax=ax,
|
| 679 |
+
x_axis='time',
|
| 680 |
+
# y_axis='linear',
|
| 681 |
+
)
|
| 682 |
+
# img = widgets.Image.from_file(fig)
|
| 683 |
+
# import ipdb; ipdb.set_trace()
|
| 684 |
+
# img = widgets.Image(img)
|
| 685 |
+
# add image to vbox
|
| 686 |
+
vbox.children += (spec_out,)
|
| 687 |
+
return vbox
|
| 688 |
+
|
| 689 |
+
def show_spectrogram(audio_path=None, data=None, rate=None, figsize=(6, 2), ax=None, show=True):
|
| 690 |
+
if data is None and rate is None:
|
| 691 |
+
# Show spectrogram
|
| 692 |
+
data, rate = librosa.load(audio_path)
|
| 693 |
+
else:
|
| 694 |
+
assert audio_path is None, "Either audio_path or data and rate must be provided"
|
| 695 |
+
|
| 696 |
+
hop_length = 512
|
| 697 |
+
D = librosa.stft(data, n_fft=2048, hop_length=hop_length, win_length=2048) # STFT of y
|
| 698 |
+
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
| 699 |
+
|
| 700 |
+
# Create spectrogram plot widget
|
| 701 |
+
if ax is None:
|
| 702 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
| 703 |
+
im = ax.imshow(S_db, origin='lower', aspect='auto', cmap='inferno')
|
| 704 |
+
|
| 705 |
+
# Replace xtixks with time
|
| 706 |
+
xticks = ax.get_xticks()
|
| 707 |
+
time_in_seconds = librosa.frames_to_time(xticks, sr=rate, hop_length=hop_length)
|
| 708 |
+
ax.set_xticklabels(np.round(time_in_seconds, 1))
|
| 709 |
+
ax.set_xlabel('Time')
|
| 710 |
+
ax.set_yticks([])
|
| 711 |
+
if ax is None:
|
| 712 |
+
plt.close(fig)
|
| 713 |
+
|
| 714 |
+
# Create widget output
|
| 715 |
+
spec_out = widgets.Output()
|
| 716 |
+
with spec_out:
|
| 717 |
+
display(fig)
|
| 718 |
+
return spec_out
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
def show_single_video_and_spectrogram(
|
| 722 |
+
video_path, audio_path,
|
| 723 |
+
label="Sample video", figsize=(6, 2),
|
| 724 |
+
width=480,
|
| 725 |
+
show_spec_stats=False,
|
| 726 |
+
):
|
| 727 |
+
# Show video
|
| 728 |
+
vbox = show_single_video(video_path, label=label, width=width)
|
| 729 |
+
# get width of video widget
|
| 730 |
+
width = vbox.children[1].layout.width
|
| 731 |
+
|
| 732 |
+
# Show spectrogram
|
| 733 |
+
data, rate = librosa.load(audio_path)
|
| 734 |
+
hop_length = 512
|
| 735 |
+
D = librosa.stft(data, n_fft=2048, hop_length=hop_length, win_length=2048) # STFT of y
|
| 736 |
+
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
| 737 |
+
|
| 738 |
+
# Create spectrogram plot widget
|
| 739 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
| 740 |
+
im = ax.imshow(S_db, origin='lower', aspect='auto', cmap='inferno')
|
| 741 |
+
|
| 742 |
+
# Replace xtixks with time
|
| 743 |
+
xticks = ax.get_xticks()
|
| 744 |
+
time_in_seconds = librosa.frames_to_time(xticks, sr=rate, hop_length=hop_length)
|
| 745 |
+
ax.set_xticklabels(np.round(time_in_seconds, 1))
|
| 746 |
+
ax.set_xlabel('Time')
|
| 747 |
+
ax.set_yticks([])
|
| 748 |
+
plt.close(fig)
|
| 749 |
+
|
| 750 |
+
# Create widget output
|
| 751 |
+
spec_out = widgets.Output()
|
| 752 |
+
with spec_out:
|
| 753 |
+
display(fig)
|
| 754 |
+
vbox.children += (spec_out,)
|
| 755 |
+
|
| 756 |
+
if show_spec_stats:
|
| 757 |
+
# Compute mean of spectrogram over frequency axis
|
| 758 |
+
eps = 1e-5
|
| 759 |
+
S_db_normalized = (S_db - S_db.mean(axis=1)[:, None]) / (S_db.std(axis=1)[:, None] + eps)
|
| 760 |
+
S_db_over_time = S_db_normalized.sum(axis=0)
|
| 761 |
+
# Plot S_db_over_time
|
| 762 |
+
fig, ax = plt.subplots(1, 1, figsize=(6, 2))
|
| 763 |
+
# ax.set_title("Spectrogram over time")
|
| 764 |
+
ax.grid(alpha=0.5)
|
| 765 |
+
x = np.arange(len(S_db_over_time))
|
| 766 |
+
x = librosa.frames_to_time(x, sr=rate, hop_length=hop_length)
|
| 767 |
+
x = np.round(x, 1)
|
| 768 |
+
ax.plot(x, S_db_over_time)
|
| 769 |
+
ax.set_xlabel('Time')
|
| 770 |
+
ax.set_yticks([])
|
| 771 |
+
plt.close(fig)
|
| 772 |
+
plot_out = widgets.Output()
|
| 773 |
+
with plot_out:
|
| 774 |
+
display(fig)
|
| 775 |
+
vbox.children += (plot_out,)
|
| 776 |
+
|
| 777 |
+
return vbox
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
def show_single_spectrogram(
|
| 781 |
+
filepath=None,
|
| 782 |
+
data=None,
|
| 783 |
+
rate=None,
|
| 784 |
+
start=None,
|
| 785 |
+
end=None,
|
| 786 |
+
ax=None,
|
| 787 |
+
label="Sample spectrogram",
|
| 788 |
+
figsize=(6, 2),
|
| 789 |
+
xlabel="Time",
|
| 790 |
+
):
|
| 791 |
+
|
| 792 |
+
if filepath is None:
|
| 793 |
+
assert data is not None and rate is not None, "Either filepath or data and rate must be provided"
|
| 794 |
+
else:
|
| 795 |
+
rate = 22050
|
| 796 |
+
offset = start or 0
|
| 797 |
+
clip_duration = end - start if end is not None else None
|
| 798 |
+
data, rate = librosa.load(filepath, sr=rate, offset=offset, duration=clip_duration)
|
| 799 |
+
|
| 800 |
+
# start = 0 if start is None else int(rate * start)
|
| 801 |
+
# end = len(data) if end is None else int(rate * end)
|
| 802 |
+
# data = data[start:end]
|
| 803 |
+
|
| 804 |
+
# Show spectrogram
|
| 805 |
+
spec_out = widgets.Output()
|
| 806 |
+
D = librosa.stft(data) # STFT of y
|
| 807 |
+
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
| 808 |
+
|
| 809 |
+
if ax is None:
|
| 810 |
+
fig, ax = plt.subplots(figsize=figsize)
|
| 811 |
+
|
| 812 |
+
with spec_out:
|
| 813 |
+
img = librosa.display.specshow(
|
| 814 |
+
S_db,
|
| 815 |
+
ax=ax,
|
| 816 |
+
x_axis='time',
|
| 817 |
+
sr=rate,
|
| 818 |
+
# y_axis='linear',
|
| 819 |
+
)
|
| 820 |
+
ax.set_xlabel(xlabel)
|
| 821 |
+
ax.margins(x=0)
|
| 822 |
+
plt.subplots_adjust(wspace=0, hspace=0)
|
| 823 |
+
|
| 824 |
+
# img = widgets.Image.from_file(fig)
|
| 825 |
+
# import ipdb; ipdb.set_trace()
|
| 826 |
+
# img = widgets.Image(img)
|
| 827 |
+
# add image to vbox
|
| 828 |
+
vbox = VBox([spec_out])
|
| 829 |
+
return vbox
|
| 830 |
+
# return spec_out
|
| 831 |
+
|
| 832 |
+
|
| 833 |
+
# from decord import VideoReader
|
| 834 |
+
def show_single_video(filepath, label="Sample video", width=480, fix_resolution=True):
|
| 835 |
+
|
| 836 |
+
if label is None:
|
| 837 |
+
label = "Sample video"
|
| 838 |
+
|
| 839 |
+
height = None
|
| 840 |
+
if fix_resolution:
|
| 841 |
+
aspect_ratio = 16. / 9.
|
| 842 |
+
height = int(width * (1/ aspect_ratio))
|
| 843 |
+
|
| 844 |
+
label = Label(f"{label}")
|
| 845 |
+
out = widgets.Output()
|
| 846 |
+
with out:
|
| 847 |
+
display(Video(filepath, embed=True, width=width, height=height))
|
| 848 |
+
vbox = VBox([label, out])
|
| 849 |
+
return vbox
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
def show_grid_of_audio(files, starts=None, ends=None, labels=None, ncols=None, show_spec=False):
|
| 853 |
+
|
| 854 |
+
for f in files:
|
| 855 |
+
assert os.path.exists(f), f"File {f} does not exist."
|
| 856 |
+
|
| 857 |
+
if labels is None:
|
| 858 |
+
labels = [None] * len(files)
|
| 859 |
+
|
| 860 |
+
if starts is None:
|
| 861 |
+
starts = [None] * len(files)
|
| 862 |
+
|
| 863 |
+
if ends is None:
|
| 864 |
+
ends = [None] * len(files)
|
| 865 |
+
|
| 866 |
+
assert len(files) == len(labels)
|
| 867 |
+
|
| 868 |
+
if ncols is None:
|
| 869 |
+
ncols = 3
|
| 870 |
+
nfiles = len(files)
|
| 871 |
+
nrows = nfiles // ncols + (nfiles % ncols != 0)
|
| 872 |
+
# print(nrows, ncols)
|
| 873 |
+
|
| 874 |
+
for i in range(nrows):
|
| 875 |
+
row_hbox = []
|
| 876 |
+
for j in range(ncols):
|
| 877 |
+
idx = i * ncols + j
|
| 878 |
+
# print(i, j, idx)
|
| 879 |
+
|
| 880 |
+
if idx < len(files):
|
| 881 |
+
file, label = files[idx], labels[idx]
|
| 882 |
+
start, end = starts[idx], ends[idx]
|
| 883 |
+
vbox = show_single_audio(
|
| 884 |
+
filepath=file, label=label, start=start, end=end
|
| 885 |
+
)
|
| 886 |
+
if show_spec:
|
| 887 |
+
spec_box = show_spectrogram(file, figsize=(3.6, 1))
|
| 888 |
+
# Add spectrogram to vbox
|
| 889 |
+
vbox.children += (spec_box,)
|
| 890 |
+
|
| 891 |
+
# if not show_spec:
|
| 892 |
+
# vbox = show_single_audio(
|
| 893 |
+
# filepath=file, label=label, start=start, end=end
|
| 894 |
+
# )
|
| 895 |
+
# else:
|
| 896 |
+
# vbox = show_single_audio_with_spectrogram(
|
| 897 |
+
# filepath=file, label=label
|
| 898 |
+
# )
|
| 899 |
+
row_hbox.append(vbox)
|
| 900 |
+
row_hbox = HBox(row_hbox)
|
| 901 |
+
display(row_hbox)
|
| 902 |
+
|
| 903 |
+
|
| 904 |
+
def show_grid_of_videos(
|
| 905 |
+
files,
|
| 906 |
+
cut=False,
|
| 907 |
+
starts=None,
|
| 908 |
+
ends=None,
|
| 909 |
+
labels=None,
|
| 910 |
+
ncols=None,
|
| 911 |
+
width_overflow=False,
|
| 912 |
+
show_spec=False,
|
| 913 |
+
width_of_screen=1000,
|
| 914 |
+
):
|
| 915 |
+
from moviepy.editor import VideoFileClip
|
| 916 |
+
|
| 917 |
+
for f in files:
|
| 918 |
+
assert os.path.exists(f), f"File {f} does not exist."
|
| 919 |
+
|
| 920 |
+
if labels is None:
|
| 921 |
+
labels = [None] * len(files)
|
| 922 |
+
if starts is not None and ends is not None:
|
| 923 |
+
cut = True
|
| 924 |
+
if starts is None:
|
| 925 |
+
starts = [None] * len(files)
|
| 926 |
+
if ends is None:
|
| 927 |
+
ends = [None] * len(files)
|
| 928 |
+
|
| 929 |
+
assert len(files) == len(labels) == len(starts) == len(ends)
|
| 930 |
+
|
| 931 |
+
# cut the videos to the specified duration
|
| 932 |
+
if cut:
|
| 933 |
+
cut_files = []
|
| 934 |
+
for i, f in enumerate(files):
|
| 935 |
+
start, end = starts[i], ends[i]
|
| 936 |
+
|
| 937 |
+
tmp_f = os.path.join(os.path.expanduser("~"), f"tmp/clip_{i}.mp4")
|
| 938 |
+
cut_files.append(tmp_f)
|
| 939 |
+
|
| 940 |
+
video = VideoFileClip(f)
|
| 941 |
+
start = 0 if start is None else start
|
| 942 |
+
end = video.duration-1 if end is None else end
|
| 943 |
+
# print(start, end)
|
| 944 |
+
video.subclip(start, end).write_videofile(tmp_f, logger=None, verbose=False)
|
| 945 |
+
files = cut_files
|
| 946 |
+
|
| 947 |
+
if ncols is None:
|
| 948 |
+
ncols = 3
|
| 949 |
+
width_of_screen = 1000
|
| 950 |
+
|
| 951 |
+
# get width of the whole display screen
|
| 952 |
+
if not width_overflow:
|
| 953 |
+
width_of_single_video = width_of_screen // ncols
|
| 954 |
+
else:
|
| 955 |
+
width_of_single_video = 280
|
| 956 |
+
|
| 957 |
+
nfiles = len(files)
|
| 958 |
+
nrows = nfiles // ncols + (nfiles % ncols != 0)
|
| 959 |
+
# print(nrows, ncols)
|
| 960 |
+
|
| 961 |
+
for i in range(nrows):
|
| 962 |
+
row_hbox = []
|
| 963 |
+
for j in range(ncols):
|
| 964 |
+
idx = i * ncols + j
|
| 965 |
+
# print(i, j, idx)
|
| 966 |
+
|
| 967 |
+
if idx < len(files):
|
| 968 |
+
file, label = files[idx], labels[idx]
|
| 969 |
+
if not show_spec:
|
| 970 |
+
vbox = show_single_video(file, label, width_of_single_video)
|
| 971 |
+
else:
|
| 972 |
+
vbox = show_single_video_and_spectrogram(file, file, width=width_of_single_video, label=label)
|
| 973 |
+
row_hbox.append(vbox)
|
| 974 |
+
row_hbox = HBox(row_hbox)
|
| 975 |
+
display(row_hbox)
|
| 976 |
+
|
| 977 |
+
|
| 978 |
+
|
| 979 |
+
def preview_video(fp, label="Sample video frames", mode="uniform", frames_to_show=6):
|
| 980 |
+
from decord import VideoReader
|
| 981 |
+
|
| 982 |
+
assert exists(fp), f"Video does not exist at {fp}"
|
| 983 |
+
vr = VideoReader(fp)
|
| 984 |
+
|
| 985 |
+
nfs = len(vr)
|
| 986 |
+
fps = vr.get_avg_fps()
|
| 987 |
+
dur = nfs / fps
|
| 988 |
+
|
| 989 |
+
if mode == "all":
|
| 990 |
+
frame_indices = np.arange(nfs)
|
| 991 |
+
elif mode == "uniform":
|
| 992 |
+
frame_indices = np.linspace(0, nfs - 1, frames_to_show, dtype=int)
|
| 993 |
+
elif mode == "random":
|
| 994 |
+
frame_indices = np.random.randint(0, nfs - 1, replace=False)
|
| 995 |
+
frame_indices = sorted(frame_indices)
|
| 996 |
+
else:
|
| 997 |
+
raise ValueError(f"Unknown frame viewing mode {mode}.")
|
| 998 |
+
|
| 999 |
+
# Show grid of image
|
| 1000 |
+
images = vr.get_batch(frame_indices).asnumpy()
|
| 1001 |
+
show_grid_of_images(images, n_cols=len(frame_indices), title=label, figsize=(12, 2.3), titlesize=10)
|
| 1002 |
+
|
| 1003 |
+
|
| 1004 |
+
def preview_multiple_videos(fps, labels, mode="uniform", frames_to_show=6):
|
| 1005 |
+
for fp in fps:
|
| 1006 |
+
assert exists(fp), f"Video does not exist at {fp}"
|
| 1007 |
+
|
| 1008 |
+
for fp, label in zip(fps, labels):
|
| 1009 |
+
preview_video(fp, label, mode=mode, frames_to_show=frames_to_show)
|
| 1010 |
+
|
| 1011 |
+
|
| 1012 |
+
|
| 1013 |
+
def show_small_clips_in_a_video(
|
| 1014 |
+
video_path,
|
| 1015 |
+
clip_segments: list,
|
| 1016 |
+
width=360,
|
| 1017 |
+
labels=None,
|
| 1018 |
+
show_spec=False,
|
| 1019 |
+
resize=False,
|
| 1020 |
+
):
|
| 1021 |
+
from moviepy.editor import VideoFileClip
|
| 1022 |
+
from ipywidgets import Layout
|
| 1023 |
+
|
| 1024 |
+
video = VideoFileClip(video_path)
|
| 1025 |
+
|
| 1026 |
+
if resize:
|
| 1027 |
+
# Resize the video
|
| 1028 |
+
print("Resizing the video to width", width)
|
| 1029 |
+
video = video.resize(width=width)
|
| 1030 |
+
|
| 1031 |
+
if labels is None:
|
| 1032 |
+
labels = [
|
| 1033 |
+
f"Clip {i+1} [{clip_segments[i][0]} : {clip_segments[i][1]}]" for i in range(len(clip_segments))
|
| 1034 |
+
]
|
| 1035 |
+
else:
|
| 1036 |
+
assert len(labels) == len(clip_segments)
|
| 1037 |
+
|
| 1038 |
+
tmp_dir = os.path.join(os.path.expanduser("~"), "tmp")
|
| 1039 |
+
tmp_clippaths = [f"{tmp_dir}/clip_{i}.mp4" for i in range(len(clip_segments))]
|
| 1040 |
+
|
| 1041 |
+
iterator = tqdm_iterator(zip(clip_segments, tmp_clippaths), total=len(clip_segments), desc="Preparing clips")
|
| 1042 |
+
clips = [
|
| 1043 |
+
video.subclip(x, y).write_videofile(f, logger=None, verbose=False) \
|
| 1044 |
+
for (x, y), f in iterator
|
| 1045 |
+
]
|
| 1046 |
+
# show_grid_of_videos(tmp_clippaths, labels, ncols=len(clips), width_overflow=True)
|
| 1047 |
+
hbox = []
|
| 1048 |
+
for i in range(len(clips)):
|
| 1049 |
+
# vbox = show_single_video(tmp_clippaths[i], labels[i], width=280)
|
| 1050 |
+
|
| 1051 |
+
vbox = widgets.Output()
|
| 1052 |
+
with vbox:
|
| 1053 |
+
if show_spec:
|
| 1054 |
+
display(
|
| 1055 |
+
show_single_video_and_spectrogram(
|
| 1056 |
+
tmp_clippaths[i], tmp_clippaths[i],
|
| 1057 |
+
width=width, figsize=(4.4, 1.5),
|
| 1058 |
+
)
|
| 1059 |
+
)
|
| 1060 |
+
else:
|
| 1061 |
+
display(Video(tmp_clippaths[i], embed=True, width=width))
|
| 1062 |
+
# reduce vspace between video and label
|
| 1063 |
+
display(Label(labels[i], layout=Layout(margin="-8px 0px 0px 0px")))
|
| 1064 |
+
# if show_spec:
|
| 1065 |
+
# display(show_single_spectrogram(tmp_clippaths[i], figsize=(4.5, 1.5)))
|
| 1066 |
+
hbox.append(vbox)
|
| 1067 |
+
hbox = HBox(hbox)
|
| 1068 |
+
display(hbox)
|
| 1069 |
+
|
| 1070 |
+
|
| 1071 |
+
def show_single_video_and_audio(
|
| 1072 |
+
video_path, audio_path, label="Sample video and audio",
|
| 1073 |
+
start=None, end=None, width=360, sr=44100, show=True,
|
| 1074 |
+
):
|
| 1075 |
+
from moviepy.editor import VideoFileClip
|
| 1076 |
+
|
| 1077 |
+
# Load video
|
| 1078 |
+
video = VideoFileClip(video_path)
|
| 1079 |
+
video_args = {"embed": True, "width": width}
|
| 1080 |
+
filepath = video_path
|
| 1081 |
+
|
| 1082 |
+
# Load audio
|
| 1083 |
+
audio_waveform, sr = librosa.load(audio_path, sr=sr)
|
| 1084 |
+
audio_args = {"data": audio_waveform, "rate": sr}
|
| 1085 |
+
|
| 1086 |
+
if start is not None and end is not None:
|
| 1087 |
+
|
| 1088 |
+
# Cut video from start to end
|
| 1089 |
+
tmp_dir = os.path.join(os.path.expanduser("~"), "tmp")
|
| 1090 |
+
clip_path = os.path.join(tmp_dir, "clip_sample.mp4")
|
| 1091 |
+
video.subclip(start, end).write_videofile(clip_path, logger=None, verbose=False)
|
| 1092 |
+
filepath = clip_path
|
| 1093 |
+
|
| 1094 |
+
# Cut audio from start to end
|
| 1095 |
+
audio_waveform = audio_waveform[int(start * sr): int(end * sr)]
|
| 1096 |
+
audio_args["data"] = audio_waveform
|
| 1097 |
+
|
| 1098 |
+
out = widgets.Output()
|
| 1099 |
+
with out:
|
| 1100 |
+
label = f"{label} [{start} : {end}]"
|
| 1101 |
+
display(Label(label))
|
| 1102 |
+
display(Video(filepath, **video_args))
|
| 1103 |
+
display(Audio(**audio_args))
|
| 1104 |
+
|
| 1105 |
+
if show:
|
| 1106 |
+
display(out)
|
| 1107 |
+
else:
|
| 1108 |
+
return out
|
| 1109 |
+
|
| 1110 |
+
|
| 1111 |
+
def plot_waveform(waveform, sample_rate, figsize=(10, 2), ax=None, skip=100, show=True, title=None):
|
| 1112 |
+
if isinstance(waveform, torch.Tensor):
|
| 1113 |
+
waveform = waveform.numpy()
|
| 1114 |
+
|
| 1115 |
+
time_axis = torch.arange(0, len(waveform)) / sample_rate
|
| 1116 |
+
waveform = waveform[::skip]
|
| 1117 |
+
time_axis = time_axis[::skip]
|
| 1118 |
+
|
| 1119 |
+
if len(waveform.shape) == 1:
|
| 1120 |
+
num_channels = 1
|
| 1121 |
+
num_frames = waveform.shape[0]
|
| 1122 |
+
waveform = waveform.reshape(1, num_frames)
|
| 1123 |
+
elif len(waveform.shape) == 2:
|
| 1124 |
+
num_channels, num_frames = waveform.shape
|
| 1125 |
+
else:
|
| 1126 |
+
raise ValueError(f"Waveform has invalid shape {waveform.shape}")
|
| 1127 |
+
|
| 1128 |
+
if ax is None:
|
| 1129 |
+
figure, axes = plt.subplots(num_channels, 1, figsize=figsize)
|
| 1130 |
+
if num_channels == 1:
|
| 1131 |
+
axes = [axes]
|
| 1132 |
+
for c in range(num_channels):
|
| 1133 |
+
axes[c].plot(time_axis, waveform[c], linewidth=1)
|
| 1134 |
+
axes[c].grid(True)
|
| 1135 |
+
if num_channels > 1:
|
| 1136 |
+
axes[c].set_ylabel(f"Channel {c+1}")
|
| 1137 |
+
figure.suptitle(title)
|
| 1138 |
+
else:
|
| 1139 |
+
assert num_channels == 1
|
| 1140 |
+
ax.plot(time_axis, waveform[0], linewidth=1)
|
| 1141 |
+
ax.grid(True)
|
| 1142 |
+
# ax.set_xticks([])
|
| 1143 |
+
# ax.set_yticks([])
|
| 1144 |
+
# ax.set_xlim(-0.1, 0.1)
|
| 1145 |
+
ax.set_ylim(-0.05, 0.05)
|
| 1146 |
+
|
| 1147 |
+
if show:
|
| 1148 |
+
plt.show(block=False)
|
| 1149 |
+
|
| 1150 |
+
|
| 1151 |
+
def show_waveform_as_image(waveform, sr=16000):
|
| 1152 |
+
"""Plots a waveform as plt fig and converts into PIL.Image"""
|
| 1153 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
| 1154 |
+
plot_waveform(waveform, sr, ax=ax, show=False)
|
| 1155 |
+
fig.canvas.draw()
|
| 1156 |
+
img = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
|
| 1157 |
+
plt.close(fig)
|
| 1158 |
+
return img
|
| 1159 |
+
|
| 1160 |
+
|
| 1161 |
+
def plot_raw_audio_signal_with_markings(signal: np.ndarray, markings: list,
|
| 1162 |
+
title: str = 'Raw audio signal with markings',
|
| 1163 |
+
figsize: tuple = (23, 4),
|
| 1164 |
+
):
|
| 1165 |
+
|
| 1166 |
+
plt.figure(figsize=figsize)
|
| 1167 |
+
plt.grid()
|
| 1168 |
+
|
| 1169 |
+
plt.plot(signal)
|
| 1170 |
+
for value in markings:
|
| 1171 |
+
plt.axvline(x=value, c='red')
|
| 1172 |
+
plt.xlabel('Time')
|
| 1173 |
+
plt.title(title)
|
| 1174 |
+
|
| 1175 |
+
plt.show()
|
| 1176 |
+
plt.close()
|
| 1177 |
+
|
| 1178 |
+
|
| 1179 |
+
def get_concat_h(im1, im2):
|
| 1180 |
+
"""Concatenate two images horizontally"""
|
| 1181 |
+
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
|
| 1182 |
+
dst.paste(im1, (0, 0))
|
| 1183 |
+
dst.paste(im2, (im1.width, 0))
|
| 1184 |
+
return dst
|
| 1185 |
+
|
| 1186 |
+
|
| 1187 |
+
def concat_images(images):
|
| 1188 |
+
im1 = images[0]
|
| 1189 |
+
canvas_height = max([im.height for im in images])
|
| 1190 |
+
dst = Image.new('RGB', (sum([im.width for im in images]), im1.height))
|
| 1191 |
+
start_width = 0
|
| 1192 |
+
for i, im in enumerate(images):
|
| 1193 |
+
if im.height < canvas_height:
|
| 1194 |
+
start_height = (canvas_height - im.height) // 2
|
| 1195 |
+
else:
|
| 1196 |
+
start_height = 0
|
| 1197 |
+
print(i, start_height)
|
| 1198 |
+
dst.paste(im, (start_width, start_height))
|
| 1199 |
+
start_width += im.width
|
| 1200 |
+
return dst
|
| 1201 |
+
|
| 1202 |
+
|
| 1203 |
+
def concat_images_with_border(images, border_width=5, border_color="white"):
|
| 1204 |
+
im1 = images[0]
|
| 1205 |
+
total_width = sum([im.width for im in images]) + (len(images) - 1) * border_width
|
| 1206 |
+
max_height = max([im.height for im in images])
|
| 1207 |
+
dst = Image.new(
|
| 1208 |
+
'RGB',
|
| 1209 |
+
(total_width, max_height),
|
| 1210 |
+
border_color,
|
| 1211 |
+
)
|
| 1212 |
+
start_width = 0
|
| 1213 |
+
uniform_height = im1.height
|
| 1214 |
+
canvas_height = max([im.height for im in images])
|
| 1215 |
+
for i, im in enumerate(images):
|
| 1216 |
+
# if im.height != uniform_height:
|
| 1217 |
+
# im = resize_height(im.copy(), uniform_height)
|
| 1218 |
+
if im.height < canvas_height:
|
| 1219 |
+
start_height = (canvas_height - im.height) // 2
|
| 1220 |
+
|
| 1221 |
+
# Pad with zeros at top and bottom
|
| 1222 |
+
im = ImageOps.expand(
|
| 1223 |
+
im, border=(0, start_height, 0, canvas_height - im.height - start_height),
|
| 1224 |
+
)
|
| 1225 |
+
start_height = 0
|
| 1226 |
+
else:
|
| 1227 |
+
start_height = 0
|
| 1228 |
+
dst.paste(im, (start_width, start_height))
|
| 1229 |
+
start_width += im.width + border_width
|
| 1230 |
+
return dst
|
| 1231 |
+
|
| 1232 |
+
|
| 1233 |
+
def concat_images_vertically(images):
|
| 1234 |
+
im1 = images[0]
|
| 1235 |
+
dst = Image.new('RGB', (im1.width, sum([im.height for im in images])))
|
| 1236 |
+
start_height = 0
|
| 1237 |
+
for i, im in enumerate(images):
|
| 1238 |
+
dst.paste(im, (0, start_height))
|
| 1239 |
+
start_height += im.height
|
| 1240 |
+
return dst
|
| 1241 |
+
|
| 1242 |
+
|
| 1243 |
+
def concat_images_vertically_with_border(images, border_width=5, border_color="white"):
|
| 1244 |
+
im1 = images[0]
|
| 1245 |
+
dst = Image.new('RGB', (im1.width, sum([im.height for im in images]) + (len(images) - 1) * border_width), border_color)
|
| 1246 |
+
start_height = 0
|
| 1247 |
+
for i, im in enumerate(images):
|
| 1248 |
+
dst.paste(im, (0, start_height))
|
| 1249 |
+
start_height += im.height + border_width
|
| 1250 |
+
return dst
|
| 1251 |
+
|
| 1252 |
+
|
| 1253 |
+
def get_concat_v(im1, im2):
|
| 1254 |
+
"""Concatenate two images vertically"""
|
| 1255 |
+
dst = Image.new('RGB', (im1.width, im1.height + im2.height))
|
| 1256 |
+
dst.paste(im1, (0, 0))
|
| 1257 |
+
dst.paste(im2, (0, im1.height))
|
| 1258 |
+
return dst
|
| 1259 |
+
|
| 1260 |
+
|
| 1261 |
+
def set_latex_fonts(usetex=True, fontsize=14, show_sample=False, **kwargs):
|
| 1262 |
+
try:
|
| 1263 |
+
plt.rcParams.update({
|
| 1264 |
+
"text.usetex": usetex,
|
| 1265 |
+
"font.family": "serif",
|
| 1266 |
+
"font.serif": ["Computer Modern Roman"],
|
| 1267 |
+
"font.size": fontsize,
|
| 1268 |
+
**kwargs,
|
| 1269 |
+
})
|
| 1270 |
+
if show_sample:
|
| 1271 |
+
plt.figure()
|
| 1272 |
+
plt.title("Sample $y = x^2$")
|
| 1273 |
+
plt.plot(np.arange(0, 10), np.arange(0, 10)**2, "--o")
|
| 1274 |
+
plt.grid()
|
| 1275 |
+
plt.show()
|
| 1276 |
+
except:
|
| 1277 |
+
print("Failed to setup LaTeX fonts. Proceeding without.")
|
| 1278 |
+
pass
|
| 1279 |
+
|
| 1280 |
+
|
| 1281 |
+
def get_colors(num_colors, palette="jet"):
|
| 1282 |
+
cmap = plt.get_cmap(palette)
|
| 1283 |
+
colors = [cmap(i) for i in np.linspace(0, 1, num_colors)]
|
| 1284 |
+
return colors
|
| 1285 |
+
|
| 1286 |
+
|
| 1287 |
+
def add_box_on_image(image, bbox, color="red", thickness=3, resized=False, fillcolor=None, fillalpha=0.2):
|
| 1288 |
+
"""
|
| 1289 |
+
Adds bounding box on image.
|
| 1290 |
+
|
| 1291 |
+
Args:
|
| 1292 |
+
image (PIL.Image): image
|
| 1293 |
+
bbox (list): [xmin, ymin, xmax, ymax]
|
| 1294 |
+
color: -
|
| 1295 |
+
thickness: -
|
| 1296 |
+
"""
|
| 1297 |
+
image = image.copy().convert("RGB")
|
| 1298 |
+
# color = get_predominant_color(color)
|
| 1299 |
+
color = PIL.ImageColor.getrgb(color)
|
| 1300 |
+
|
| 1301 |
+
# Apply alpha to fillcolor
|
| 1302 |
+
if fillcolor is not None:
|
| 1303 |
+
if isinstance(fillcolor, str):
|
| 1304 |
+
fillcolor = PIL.ImageColor.getrgb(fillcolor)
|
| 1305 |
+
fillcolor= fillcolor + (int(fillalpha * 255),)
|
| 1306 |
+
elif isinstance(fillcolor, tuple):
|
| 1307 |
+
if len(fillcolor) == 3:
|
| 1308 |
+
fillcolor= fillcolor + (int(fillalpha * 255),)
|
| 1309 |
+
else:
|
| 1310 |
+
pass
|
| 1311 |
+
|
| 1312 |
+
# Create an instance of the ImageDraw class
|
| 1313 |
+
draw = ImageDraw.Draw(image, "RGBA")
|
| 1314 |
+
|
| 1315 |
+
# Draw the bounding box on the image
|
| 1316 |
+
draw.rectangle(bbox, outline=color, width=thickness, fill=fillcolor)
|
| 1317 |
+
|
| 1318 |
+
# Resize
|
| 1319 |
+
new_width, new_height = (320, 240)
|
| 1320 |
+
if resized:
|
| 1321 |
+
image = image.resize((new_width, new_height))
|
| 1322 |
+
|
| 1323 |
+
return image
|
| 1324 |
+
|
| 1325 |
+
|
| 1326 |
+
def add_multiple_boxes_on_image(image, bboxes, colors=None, thickness=3, resized=False, fillcolor=None, fillalpha=0.2):
|
| 1327 |
+
image = image.copy().convert("RGB")
|
| 1328 |
+
if colors is None:
|
| 1329 |
+
colors = ["red"] * len(bboxes)
|
| 1330 |
+
for bbox, color in zip(bboxes, colors):
|
| 1331 |
+
image = add_box_on_image(image, bbox, color, thickness, resized, fillcolor, fillalpha)
|
| 1332 |
+
return image
|
| 1333 |
+
|
| 1334 |
+
|
| 1335 |
+
def colorize_mask(mask, color="red"):
|
| 1336 |
+
# mask = mask.convert("RGBA")
|
| 1337 |
+
color = PIL.ImageColor.getrgb(color)
|
| 1338 |
+
mask = ImageOps.colorize(mask, (0, 0, 0, 0), color)
|
| 1339 |
+
return mask
|
| 1340 |
+
|
| 1341 |
+
|
| 1342 |
+
def add_mask_on_image(image: Image, mask: Image, color="green", alpha=0.5):
|
| 1343 |
+
image = image.copy()
|
| 1344 |
+
mask = mask.copy()
|
| 1345 |
+
|
| 1346 |
+
# get color if it is a string
|
| 1347 |
+
if isinstance(color, str):
|
| 1348 |
+
color = PIL.ImageColor.getrgb(color)
|
| 1349 |
+
# color = get_predominant_color(color)
|
| 1350 |
+
mask = ImageOps.colorize(mask, (0, 0, 0, 0), color)
|
| 1351 |
+
|
| 1352 |
+
mask = mask.convert("RGB")
|
| 1353 |
+
assert (mask.size == image.size)
|
| 1354 |
+
assert (mask.mode == image.mode)
|
| 1355 |
+
|
| 1356 |
+
# Blend the original image and the segmentation mask with a 50% weight
|
| 1357 |
+
blended_image = Image.blend(image, mask, alpha)
|
| 1358 |
+
return blended_image
|
| 1359 |
+
|
| 1360 |
+
|
| 1361 |
+
def blend_images(img1, img2, alpha=0.5):
|
| 1362 |
+
# Convert images to RGBA
|
| 1363 |
+
img1 = img1.convert("RGBA")
|
| 1364 |
+
img2 = img2.convert("RGBA")
|
| 1365 |
+
alpha_blended = Image.blend(img1, img2, alpha=alpha)
|
| 1366 |
+
# Convert back to RGB
|
| 1367 |
+
alpha_blended = alpha_blended.convert("RGB")
|
| 1368 |
+
return alpha_blended
|
| 1369 |
+
|
| 1370 |
+
|
| 1371 |
+
def visualize_youtube_clip(
|
| 1372 |
+
youtube_id, st, et, label="",
|
| 1373 |
+
show_spec=False,
|
| 1374 |
+
video_width=360, video_height=240,
|
| 1375 |
+
):
|
| 1376 |
+
|
| 1377 |
+
url = f"https://www.youtube.com/embed/{youtube_id}?start={int(st)}&end={int(et)}"
|
| 1378 |
+
video_html_code = f"""
|
| 1379 |
+
<iframe height="{video_height}" width="{video_width}" src="{url}" frameborder="0" allowfullscreen></iframe>
|
| 1380 |
+
"""
|
| 1381 |
+
label_html_code = f"""<b>Caption</b>: {label} <br> <b>Time</b>: {st} to {et}"""
|
| 1382 |
+
|
| 1383 |
+
# Show label and video below it
|
| 1384 |
+
label = widgets.HTML(label_html_code)
|
| 1385 |
+
video = widgets.HTML(video_html_code)
|
| 1386 |
+
|
| 1387 |
+
if show_spec:
|
| 1388 |
+
import pytube
|
| 1389 |
+
import base64
|
| 1390 |
+
from io import BytesIO
|
| 1391 |
+
from moviepy.video.io.VideoFileClip import VideoFileClip
|
| 1392 |
+
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
| 1393 |
+
|
| 1394 |
+
# Load audio directly from youtube
|
| 1395 |
+
video_url = f"https://www.youtube.com/watch?v={youtube_id}"
|
| 1396 |
+
yt = pytube.YouTube(video_url)
|
| 1397 |
+
# Get the audio stream
|
| 1398 |
+
audio_stream = yt.streams.filter(only_audio=True).first()
|
| 1399 |
+
|
| 1400 |
+
# Download audio stream
|
| 1401 |
+
# audio_file = os.path.join("/tmp", "sample_audio.mp3")
|
| 1402 |
+
audio_stream.download(output_path='/tmp', filename='sample.mp4')
|
| 1403 |
+
|
| 1404 |
+
audio_clip = AudioFileClip("/tmp/sample.mp4")
|
| 1405 |
+
audio_subclip = audio_clip.subclip(st, et)
|
| 1406 |
+
sr = audio_subclip.fps
|
| 1407 |
+
y = audio_subclip.to_soundarray().mean(axis=1)
|
| 1408 |
+
audio_subclip.close()
|
| 1409 |
+
audio_clip.close()
|
| 1410 |
+
|
| 1411 |
+
# Compute spectrogram in librosa
|
| 1412 |
+
S_db = librosa.power_to_db(librosa.feature.melspectrogram(y, sr=sr), ref=np.max)
|
| 1413 |
+
# Compute width in cms from video_width
|
| 1414 |
+
width = video_width / plt.rcParams["figure.dpi"] + 0.63
|
| 1415 |
+
height = video_height / plt.rcParams["figure.dpi"]
|
| 1416 |
+
out = widgets.Output()
|
| 1417 |
+
with out:
|
| 1418 |
+
fig, ax = plt.subplots(figsize=(width, height))
|
| 1419 |
+
librosa.display.specshow(S_db, sr=sr, x_axis='time', ax=ax)
|
| 1420 |
+
ax.set_ylabel("Frequency (Hz)")
|
| 1421 |
+
else:
|
| 1422 |
+
out = widgets.Output()
|
| 1423 |
+
|
| 1424 |
+
vbox = widgets.VBox([label, video, out])
|
| 1425 |
+
|
| 1426 |
+
return vbox
|
| 1427 |
+
|
| 1428 |
+
|
| 1429 |
+
def visualize_pair_of_youtube_clips(clip_a, clip_b):
|
| 1430 |
+
yt_id_a = clip_a["youtube_id"]
|
| 1431 |
+
label_a = clip_a["sentence"]
|
| 1432 |
+
st_a, et_a = clip_a["time"]
|
| 1433 |
+
|
| 1434 |
+
yt_id_b = clip_b["youtube_id"]
|
| 1435 |
+
label_b = clip_b["sentence"]
|
| 1436 |
+
st_b, et_b = clip_b["time"]
|
| 1437 |
+
|
| 1438 |
+
# Show the clips side by side
|
| 1439 |
+
clip_a = visualize_youtube_clip(yt_id_a, st_a, et_a, label_a, show_spec=True)
|
| 1440 |
+
# clip_a = widgets.Output()
|
| 1441 |
+
# with clip_a:
|
| 1442 |
+
# visualize_youtube_clip(yt_id_a, st_a, et_a, label_a, show_spec=True)
|
| 1443 |
+
|
| 1444 |
+
clip_b = visualize_youtube_clip(yt_id_b, st_b, et_b, label_b, show_spec=True)
|
| 1445 |
+
# clip_b = widgets.Output()
|
| 1446 |
+
# with clip_b:
|
| 1447 |
+
# visualize_youtube_clip(yt_id_b, st_b, et_b, label_b, show_spec=True)
|
| 1448 |
+
|
| 1449 |
+
hbox = HBox([
|
| 1450 |
+
clip_a, clip_b
|
| 1451 |
+
])
|
| 1452 |
+
display(hbox)
|
| 1453 |
+
|
| 1454 |
+
|
| 1455 |
+
def plot_1d(x: np.ndarray, figsize=(6, 2), title=None, xlabel=None, ylabel=None, show=True, **kwargs):
|
| 1456 |
+
assert (x.ndim == 1)
|
| 1457 |
+
fig, ax = plt.subplots(figsize=figsize)
|
| 1458 |
+
ax.grid(alpha=0.3)
|
| 1459 |
+
ax.set_title(title)
|
| 1460 |
+
ax.set_xlabel(xlabel)
|
| 1461 |
+
ax.set_ylabel(ylabel)
|
| 1462 |
+
ax.plot(np.arange(len(x)), x, **kwargs)
|
| 1463 |
+
if show:
|
| 1464 |
+
plt.show()
|
| 1465 |
+
else:
|
| 1466 |
+
plt.close()
|
| 1467 |
+
return fig
|
| 1468 |
+
|
| 1469 |
+
|
| 1470 |
+
|
| 1471 |
+
def make_grid(cols,rows):
|
| 1472 |
+
import streamlit as st
|
| 1473 |
+
grid = [0]*cols
|
| 1474 |
+
for i in range(cols):
|
| 1475 |
+
with st.container():
|
| 1476 |
+
grid[i] = st.columns(rows)
|
| 1477 |
+
return grid
|
| 1478 |
+
|
| 1479 |
+
|
| 1480 |
+
def display_clip(video_path, stime, etime, label=None):
|
| 1481 |
+
"""Displays clip at index i."""
|
| 1482 |
+
assert exists(video_path), f"Video does not exist at {video_path}"
|
| 1483 |
+
display(
|
| 1484 |
+
show_small_clips_in_a_video(
|
| 1485 |
+
video_path, [(stime, etime)], labels=[label],
|
| 1486 |
+
),
|
| 1487 |
+
)
|
| 1488 |
+
|
| 1489 |
+
|
| 1490 |
+
def countplot(df, column, title=None, rotation=90, ylabel="Count", figsize=(8, 5), ax=None, show=True, show_counts=False):
|
| 1491 |
+
|
| 1492 |
+
if ax is None:
|
| 1493 |
+
fig, ax = plt.subplots(figsize=figsize)
|
| 1494 |
+
|
| 1495 |
+
ax.grid(alpha=0.4)
|
| 1496 |
+
ax.set_xlabel(column)
|
| 1497 |
+
ax.set_ylabel(ylabel)
|
| 1498 |
+
ax.set_title(title)
|
| 1499 |
+
|
| 1500 |
+
data = dict(df[column].value_counts())
|
| 1501 |
+
# Extract keys and values from the dictionary
|
| 1502 |
+
categories = list(data.keys())
|
| 1503 |
+
counts = list(data.values())
|
| 1504 |
+
|
| 1505 |
+
# Create a countplot
|
| 1506 |
+
ax.bar(categories, counts)
|
| 1507 |
+
ax.set_xticklabels(categories, rotation=rotation)
|
| 1508 |
+
|
| 1509 |
+
# Show count values on top of bars
|
| 1510 |
+
if show_counts:
|
| 1511 |
+
max_v = max(counts)
|
| 1512 |
+
for i, v in enumerate(counts):
|
| 1513 |
+
delta = 0.01 * max_v
|
| 1514 |
+
ax.text(i, v + delta, str(v), ha="center")
|
| 1515 |
+
|
| 1516 |
+
if show:
|
| 1517 |
+
plt.show()
|
| 1518 |
+
|
| 1519 |
+
|
| 1520 |
+
def get_linspace_colors(cmap_name='viridis', num_colors = 10):
|
| 1521 |
+
import matplotlib.colors as mcolors
|
| 1522 |
+
|
| 1523 |
+
# Get the colormap object
|
| 1524 |
+
cmap = plt.cm.get_cmap(cmap_name)
|
| 1525 |
+
|
| 1526 |
+
# Get the evenly spaced indices
|
| 1527 |
+
indices = np.arange(0, 1, 1./num_colors)
|
| 1528 |
+
|
| 1529 |
+
# Get the corresponding colors from the colormap
|
| 1530 |
+
colors = [mcolors.to_hex(cmap(idx)) for idx in indices]
|
| 1531 |
+
|
| 1532 |
+
return colors
|
| 1533 |
+
|
| 1534 |
+
|
| 1535 |
+
def hex_to_rgb(colors):
|
| 1536 |
+
from PIL import ImageColor
|
| 1537 |
+
return [ImageColor.getcolor(c, "RGB") for c in colors]
|
| 1538 |
+
|
| 1539 |
+
|
| 1540 |
+
def plot_audio_feature(times, feature, feature_label="Feature", xlabel="Time", figsize=(20, 2)):
|
| 1541 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize)
|
| 1542 |
+
ax.grid(alpha=0.4)
|
| 1543 |
+
ax.set_xlabel(xlabel)
|
| 1544 |
+
ax.set_ylabel(feature_label)
|
| 1545 |
+
ax.set_yticks([])
|
| 1546 |
+
|
| 1547 |
+
ax.plot(times, feature, '--', linewidth=0.5)
|
| 1548 |
+
plt.show()
|
| 1549 |
+
|
| 1550 |
+
|
| 1551 |
+
|
| 1552 |
+
def compute_rms(y, frame_length=512):
|
| 1553 |
+
rms = librosa.feature.rms(y=y, frame_length=frame_length)[0]
|
| 1554 |
+
times = librosa.samples_to_time(frame_length * np.arange(len(rms)))
|
| 1555 |
+
return times, rms
|
| 1556 |
+
|
| 1557 |
+
|
| 1558 |
+
def plot_audio_features(path, label, show=True, show_video=True, features=["rms"], frame_length=512, figsize=(5, 2), return_features=False):
|
| 1559 |
+
# Load audio
|
| 1560 |
+
y, sr = librosa.load(path)
|
| 1561 |
+
|
| 1562 |
+
# Show video
|
| 1563 |
+
if show_video:
|
| 1564 |
+
if show:
|
| 1565 |
+
display(
|
| 1566 |
+
show_single_video_and_spectrogram(
|
| 1567 |
+
path, path, label=label, figsize=figsize,
|
| 1568 |
+
width=410,
|
| 1569 |
+
)
|
| 1570 |
+
)
|
| 1571 |
+
else:
|
| 1572 |
+
if show:
|
| 1573 |
+
# Show audio and spectrogram
|
| 1574 |
+
display(
|
| 1575 |
+
show_single_audio_with_spectrogram(path, label=label, figsize=figsize)
|
| 1576 |
+
)
|
| 1577 |
+
|
| 1578 |
+
feature_data = dict()
|
| 1579 |
+
for f in features:
|
| 1580 |
+
fn = eval(f"compute_{f}")
|
| 1581 |
+
args = dict(y=y, frame_length=frame_length)
|
| 1582 |
+
xvals, yvals = fn(**args)
|
| 1583 |
+
feature_data[f] = (xvals, yvals)
|
| 1584 |
+
|
| 1585 |
+
if show:
|
| 1586 |
+
display(
|
| 1587 |
+
plot_audio_feature(
|
| 1588 |
+
xvals, yvals, feature_label=f.upper(), figsize=(figsize[0] - 0.25, figsize[1]),
|
| 1589 |
+
)
|
| 1590 |
+
)
|
| 1591 |
+
|
| 1592 |
+
if return_features:
|
| 1593 |
+
return feature_data
|
| 1594 |
+
|
| 1595 |
+
|
| 1596 |
+
def rescale_frame(frame, scale=1.):
|
| 1597 |
+
"""Rescales a frame by a factor of scale."""
|
| 1598 |
+
return frame.resize((int(frame.width * scale), int(frame.height * scale)))
|
| 1599 |
+
|
| 1600 |
+
|
| 1601 |
+
def save_gif(images, path, duration=None, fps=30):
|
| 1602 |
+
import imageio
|
| 1603 |
+
images = [np.asarray(image) for image in images]
|
| 1604 |
+
if fps is not None:
|
| 1605 |
+
imageio.mimsave(path, images, fps=fps)
|
| 1606 |
+
else:
|
| 1607 |
+
assert duration is not None
|
| 1608 |
+
imageio.mimsave(path, images, duration=duration)
|
| 1609 |
+
|
| 1610 |
+
|
| 1611 |
+
def show_subsampled_frames(frames, n_show, figsize=(15, 3), as_canvas=True):
|
| 1612 |
+
indices = np.arange(len(frames))
|
| 1613 |
+
indices = np.linspace(0, len(frames) - 1, n_show, dtype=int)
|
| 1614 |
+
show_frames = [frames[i] for i in indices]
|
| 1615 |
+
if as_canvas:
|
| 1616 |
+
return concat_images(show_frames)
|
| 1617 |
+
else:
|
| 1618 |
+
show_grid_of_images(show_frames, n_cols=n_show, figsize=figsize, subtitles=indices)
|
| 1619 |
+
|
| 1620 |
+
|
| 1621 |
+
def tensor_to_heatmap(x, scale=True, cmap="viridis", flip_vertically=False):
|
| 1622 |
+
import PIL
|
| 1623 |
+
|
| 1624 |
+
if isinstance(x, torch.Tensor):
|
| 1625 |
+
x = x.numpy()
|
| 1626 |
+
|
| 1627 |
+
if scale:
|
| 1628 |
+
x = (x - x.min()) / (x.max() - x.min())
|
| 1629 |
+
|
| 1630 |
+
cm = plt.get_cmap(cmap)
|
| 1631 |
+
if flip_vertically:
|
| 1632 |
+
x = np.flip(x, axis=0) # put low frequencies at the bottom in image
|
| 1633 |
+
x = cm(x)
|
| 1634 |
+
x = (x * 255).astype(np.uint8)
|
| 1635 |
+
if x.shape[-1] == 3:
|
| 1636 |
+
x = PIL.Image.fromarray(x, mode="RGB")
|
| 1637 |
+
elif x.shape[-1] == 4:
|
| 1638 |
+
x = PIL.Image.fromarray(x, mode="RGBA").convert("RGB")
|
| 1639 |
+
else:
|
| 1640 |
+
raise ValueError(f"Invalid shape {x.shape}")
|
| 1641 |
+
return x
|
| 1642 |
+
|
| 1643 |
+
|
| 1644 |
+
def batch_tensor_to_heatmap(x, scale=True, cmap="viridis", flip_vertically=False, resize=None):
|
| 1645 |
+
y = []
|
| 1646 |
+
for i in range(len(x)):
|
| 1647 |
+
h = tensor_to_heatmap(x[i], scale, cmap, flip_vertically)
|
| 1648 |
+
if resize is not None:
|
| 1649 |
+
h = h.resize(resize)
|
| 1650 |
+
y.append(h)
|
| 1651 |
+
return y
|
| 1652 |
+
|
| 1653 |
+
|
| 1654 |
+
def change_contrast(img, level):
|
| 1655 |
+
factor = (259 * (level + 255)) / (255 * (259 - level))
|
| 1656 |
+
def contrast(c):
|
| 1657 |
+
return 128 + factor * (c - 128)
|
| 1658 |
+
return img.point(contrast)
|
| 1659 |
+
|
| 1660 |
+
|
| 1661 |
+
def change_brightness(img, alpha):
|
| 1662 |
+
import PIL
|
| 1663 |
+
enhancer = PIL.ImageEnhance.Brightness(img)
|
| 1664 |
+
# to reduce brightness by 50%, use factor 0.5
|
| 1665 |
+
img = enhancer.enhance(alpha)
|
| 1666 |
+
return img
|
| 1667 |
+
|
| 1668 |
+
|
| 1669 |
+
def draw_horizontal_lines(image, y_values, color=(255, 0, 0), colors=None, line_thickness=2):
|
| 1670 |
+
"""
|
| 1671 |
+
Draw horizontal lines on a PIL image at specified Y positions.
|
| 1672 |
+
|
| 1673 |
+
Args:
|
| 1674 |
+
image (PIL.Image.Image): The input PIL image.
|
| 1675 |
+
y_values (list or int): List of Y positions where lines will be drawn.
|
| 1676 |
+
If a single integer is provided, a line will be drawn at that Y position.
|
| 1677 |
+
color (tuple): RGB color tuple (e.g., (255, 0, 0) for red).
|
| 1678 |
+
line_thickness (int): Thickness of the lines.
|
| 1679 |
+
|
| 1680 |
+
Returns:
|
| 1681 |
+
PIL.Image.Image: The PIL image with the drawn lines.
|
| 1682 |
+
"""
|
| 1683 |
+
image = image.copy()
|
| 1684 |
+
|
| 1685 |
+
if isinstance(color, str):
|
| 1686 |
+
color = PIL.ImageColor.getcolor(color, "RGB")
|
| 1687 |
+
|
| 1688 |
+
if colors is None:
|
| 1689 |
+
colors = [color] * len(y_values)
|
| 1690 |
+
else:
|
| 1691 |
+
if isinstance(colors[0], str):
|
| 1692 |
+
colors = [PIL.ImageColor.getcolor(c, "RGB") for c in colors]
|
| 1693 |
+
|
| 1694 |
+
if isinstance(y_values, int):
|
| 1695 |
+
y_values = [y_values]
|
| 1696 |
+
|
| 1697 |
+
# Create a drawing context on the image
|
| 1698 |
+
draw = PIL.ImageDraw.Draw(image)
|
| 1699 |
+
|
| 1700 |
+
if isinstance(y_values, int):
|
| 1701 |
+
y_values = [y_values]
|
| 1702 |
+
|
| 1703 |
+
for y, c in zip(y_values, colors):
|
| 1704 |
+
draw.line([(0, y), (image.width, y)], fill=c, width=line_thickness)
|
| 1705 |
+
|
| 1706 |
+
return image
|
| 1707 |
+
|
| 1708 |
+
|
| 1709 |
+
def draw_vertical_lines(image, x_values, color=(255, 0, 0), colors=None, line_thickness=2):
|
| 1710 |
+
"""
|
| 1711 |
+
Draw vertical lines on a PIL image at specified X positions.
|
| 1712 |
+
|
| 1713 |
+
Args:
|
| 1714 |
+
image (PIL.Image.Image): The input PIL image.
|
| 1715 |
+
x_values (list or int): List of X positions where lines will be drawn.
|
| 1716 |
+
If a single integer is provided, a line will be drawn at that X position.
|
| 1717 |
+
color (tuple): RGB color tuple (e.g., (255, 0, 0) for red).
|
| 1718 |
+
line_thickness (int): Thickness of the lines.
|
| 1719 |
+
|
| 1720 |
+
Returns:
|
| 1721 |
+
PIL.Image.Image: The PIL image with the drawn lines.
|
| 1722 |
+
"""
|
| 1723 |
+
image = image.copy()
|
| 1724 |
+
|
| 1725 |
+
if isinstance(color, str):
|
| 1726 |
+
color = PIL.ImageColor.getcolor(color, "RGB")
|
| 1727 |
+
|
| 1728 |
+
if colors is None:
|
| 1729 |
+
colors = [color] * len(x_values)
|
| 1730 |
+
else:
|
| 1731 |
+
if isinstance(colors[0], str):
|
| 1732 |
+
colors = [PIL.ImageColor.getcolor(c, "RGB") for c in colors]
|
| 1733 |
+
|
| 1734 |
+
if isinstance(x_values, int):
|
| 1735 |
+
x_values = [x_values]
|
| 1736 |
+
|
| 1737 |
+
# Create a drawing context on the image
|
| 1738 |
+
draw = PIL.ImageDraw.Draw(image)
|
| 1739 |
+
|
| 1740 |
+
if isinstance(x_values, int):
|
| 1741 |
+
x_values = [x_values]
|
| 1742 |
+
|
| 1743 |
+
for x, c in zip(x_values, colors):
|
| 1744 |
+
draw.line([(x, 0), (x, image.height)], fill=c, width=line_thickness)
|
| 1745 |
+
|
| 1746 |
+
return image
|
| 1747 |
+
|
| 1748 |
+
|
| 1749 |
+
def show_arrow_on_image(image, start_loc, end_loc, color="red", thickness=3):
|
| 1750 |
+
"""Draw a line on PIL image from start_loc to end_loc."""
|
| 1751 |
+
image = image.copy()
|
| 1752 |
+
color = get_predominant_color(color)
|
| 1753 |
+
|
| 1754 |
+
# Create an instance of the ImageDraw class
|
| 1755 |
+
draw = ImageDraw.Draw(image)
|
| 1756 |
+
|
| 1757 |
+
# Draw the bounding box on the image
|
| 1758 |
+
draw.line([start_loc, end_loc], fill=color, width=thickness)
|
| 1759 |
+
|
| 1760 |
+
return image
|
| 1761 |
+
|
| 1762 |
+
|
| 1763 |
+
def draw_arrow_on_image_cv2(image, start_loc, end_loc, color="red", thickness=2, both_ends=False):
|
| 1764 |
+
image = image.copy()
|
| 1765 |
+
image = np.asarray(image)
|
| 1766 |
+
if isinstance(color, str):
|
| 1767 |
+
color = PIL.ImageColor.getcolor(color, "RGB")
|
| 1768 |
+
image = cv2.arrowedLine(image, start_loc, end_loc, color, thickness)
|
| 1769 |
+
if both_ends:
|
| 1770 |
+
image = cv2.arrowedLine(image, end_loc, start_loc, color, thickness)
|
| 1771 |
+
return PIL.Image.fromarray(image)
|
| 1772 |
+
|
| 1773 |
+
|
| 1774 |
+
def draw_arrow_with_text(image, start_loc, end_loc, text="", color="red", thickness=2, font_size=20, both_ends=False, delta=5):
|
| 1775 |
+
image = np.asarray(image)
|
| 1776 |
+
if isinstance(color, str):
|
| 1777 |
+
color = PIL.ImageColor.getcolor(color, "RGB")
|
| 1778 |
+
|
| 1779 |
+
# Calculate the center point between start_loc and end_loc
|
| 1780 |
+
center_x = (start_loc[0] + end_loc[0]) // 2
|
| 1781 |
+
center_y = (start_loc[1] + end_loc[1]) // 2
|
| 1782 |
+
center_point = (center_x, center_y)
|
| 1783 |
+
|
| 1784 |
+
# Draw the arrowed line
|
| 1785 |
+
image = cv2.arrowedLine(image, start_loc, end_loc, color, thickness)
|
| 1786 |
+
if both_ends:
|
| 1787 |
+
image = cv2.arrowedLine(image, end_loc, start_loc, color, thickness)
|
| 1788 |
+
|
| 1789 |
+
# Create a PIL image from the NumPy array for drawing text
|
| 1790 |
+
image_with_text = Image.fromarray(image)
|
| 1791 |
+
draw = PIL.ImageDraw.Draw(image_with_text)
|
| 1792 |
+
|
| 1793 |
+
# Calculate the text size
|
| 1794 |
+
# font = PIL.ImageFont.truetype("arial.ttf", font_size)
|
| 1795 |
+
# This gives an error: "OSError: cannot open resource", as a hack, use the following
|
| 1796 |
+
text_width, text_height = draw.textsize(text)
|
| 1797 |
+
|
| 1798 |
+
# Calculate the position to center the text
|
| 1799 |
+
text_x = center_x - (text_width // 2) - delta
|
| 1800 |
+
text_y = center_y - (text_height // 2)
|
| 1801 |
+
|
| 1802 |
+
# Draw the text
|
| 1803 |
+
draw.text((text_x, text_y), text, color)
|
| 1804 |
+
|
| 1805 |
+
return image_with_text
|
| 1806 |
+
|
| 1807 |
+
|
| 1808 |
+
def draw_arrowed_line(image, start_loc, end_loc, color="red", thickness=2):
|
| 1809 |
+
"""
|
| 1810 |
+
Draw an arrowed line on a PIL image from a starting point to an ending point.
|
| 1811 |
+
|
| 1812 |
+
Args:
|
| 1813 |
+
image (PIL.Image.Image): The input PIL image.
|
| 1814 |
+
start_loc (tuple): Starting point (x, y) for the arrowed line.
|
| 1815 |
+
end_loc (tuple): Ending point (x, y) for the arrowed line.
|
| 1816 |
+
color (str): Color of the line (e.g., 'red', 'green', 'blue').
|
| 1817 |
+
thickness (int): Thickness of the line and arrowhead.
|
| 1818 |
+
|
| 1819 |
+
Returns:
|
| 1820 |
+
PIL.Image.Image: The PIL image with the drawn arrowed line.
|
| 1821 |
+
"""
|
| 1822 |
+
image = image.copy()
|
| 1823 |
+
if isinstance(color, str):
|
| 1824 |
+
color = PIL.ImageColor.getcolor(color, "RGB")
|
| 1825 |
+
|
| 1826 |
+
|
| 1827 |
+
# Create a drawing context on the image
|
| 1828 |
+
draw = ImageDraw.Draw(image)
|
| 1829 |
+
|
| 1830 |
+
# Draw a line from start to end
|
| 1831 |
+
draw.line([start_loc, end_loc], fill=color, width=thickness)
|
| 1832 |
+
|
| 1833 |
+
# Calculate arrowhead points
|
| 1834 |
+
arrow_size = 10 # Size of the arrowhead
|
| 1835 |
+
dx = end_loc[0] - start_loc[0]
|
| 1836 |
+
dy = end_loc[1] - start_loc[1]
|
| 1837 |
+
length = (dx ** 2 + dy ** 2) ** 0.5
|
| 1838 |
+
cos_theta = dx / length
|
| 1839 |
+
sin_theta = dy / length
|
| 1840 |
+
x1 = end_loc[0] - arrow_size * cos_theta
|
| 1841 |
+
y1 = end_loc[1] - arrow_size * sin_theta
|
| 1842 |
+
x2 = end_loc[0] - arrow_size * sin_theta
|
| 1843 |
+
y2 = end_loc[1] + arrow_size * cos_theta
|
| 1844 |
+
x3 = end_loc[0] + arrow_size * sin_theta
|
| 1845 |
+
y3 = end_loc[1] - arrow_size * cos_theta
|
| 1846 |
+
|
| 1847 |
+
# Draw the arrowhead triangle
|
| 1848 |
+
draw.polygon([end_loc, (x1, y1), (x2, y2), (x3, y3)], fill=color)
|
| 1849 |
+
|
| 1850 |
+
return image
|
| 1851 |
+
|
| 1852 |
+
|
| 1853 |
+
def center_crop_to_fraction(image, frac=0.5):
|
| 1854 |
+
"""Center crop an image to a fraction of its original size."""
|
| 1855 |
+
width, height = image.size
|
| 1856 |
+
new_width = int(width * frac)
|
| 1857 |
+
new_height = int(height * frac)
|
| 1858 |
+
left = (width - new_width) // 2
|
| 1859 |
+
top = (height - new_height) // 2
|
| 1860 |
+
right = (width + new_width) // 2
|
| 1861 |
+
bottom = (height + new_height) // 2
|
| 1862 |
+
return image.crop((left, top, right, bottom))
|
| 1863 |
+
|
| 1864 |
+
|
| 1865 |
+
def decord_load_frames(vr, frame_indices):
|
| 1866 |
+
if isinstance(frame_indices, int):
|
| 1867 |
+
frame_indices = [frame_indices]
|
| 1868 |
+
frames = vr.get_batch(frame_indices).asnumpy()
|
| 1869 |
+
frames = [Image.fromarray(frame) for frame in frames]
|
| 1870 |
+
return frames
|
| 1871 |
+
|
| 1872 |
+
|
| 1873 |
+
def paste_mask_on_image(original_image, bounding_box, mask):
|
| 1874 |
+
"""
|
| 1875 |
+
Paste a 2D mask onto the original image at the location specified by the bounding box.
|
| 1876 |
+
|
| 1877 |
+
Parameters:
|
| 1878 |
+
- original_image (PIL.Image): The original image.
|
| 1879 |
+
- bounding_box (tuple): Bounding box coordinates (left, top, right, bottom).
|
| 1880 |
+
- mask (PIL.Image): The 2D mask.
|
| 1881 |
+
|
| 1882 |
+
Returns:
|
| 1883 |
+
- PIL.Image: Image with the mask pasted on it.
|
| 1884 |
+
|
| 1885 |
+
Example:
|
| 1886 |
+
```
|
| 1887 |
+
original_image = Image.open('original.jpg')
|
| 1888 |
+
bounding_box = (100, 100, 200, 200)
|
| 1889 |
+
mask = Image.open('mask.png')
|
| 1890 |
+
result_image = paste_mask_on_image(original_image, bounding_box, mask)
|
| 1891 |
+
result_image.show()
|
| 1892 |
+
```
|
| 1893 |
+
"""
|
| 1894 |
+
# Create a copy of the original image to avoid modifying the input image
|
| 1895 |
+
result_image = original_image.copy()
|
| 1896 |
+
|
| 1897 |
+
# Crop the mask to the size of the bounding box
|
| 1898 |
+
mask_cropped = mask.crop((0, 0, bounding_box[2] - bounding_box[0], bounding_box[3] - bounding_box[1]))
|
| 1899 |
+
|
| 1900 |
+
# Paste the cropped mask onto the original image at the specified location
|
| 1901 |
+
result_image.paste(mask_cropped, (bounding_box[0], bounding_box[1]))
|
| 1902 |
+
|
| 1903 |
+
return result_image
|
| 1904 |
+
|
| 1905 |
+
|
| 1906 |
+
def display_images_as_video_moviepy(image_list, fps=5, show=True):
|
| 1907 |
+
"""
|
| 1908 |
+
Display a list of PIL images as a video in Jupyter Notebook using MoviePy.
|
| 1909 |
+
|
| 1910 |
+
Parameters:
|
| 1911 |
+
- image_list (list): List of PIL images.
|
| 1912 |
+
- fps (int): Frames per second for the video.
|
| 1913 |
+
- show (bool): Whether to display the video in the notebook.
|
| 1914 |
+
|
| 1915 |
+
Example:
|
| 1916 |
+
```
|
| 1917 |
+
image_list = [Image.open('frame1.jpg'), Image.open('frame2.jpg'), ...]
|
| 1918 |
+
display_images_as_video_moviepy(image_list, fps=10)
|
| 1919 |
+
```
|
| 1920 |
+
"""
|
| 1921 |
+
from IPython.display import display
|
| 1922 |
+
from moviepy.editor import ImageSequenceClip
|
| 1923 |
+
|
| 1924 |
+
image_list = list(map(np.asarray, image_list))
|
| 1925 |
+
clip = ImageSequenceClip(image_list, fps=fps)
|
| 1926 |
+
if show:
|
| 1927 |
+
display(clip.ipython_display(width=200))
|
| 1928 |
+
os.remove("__temp__.mp4")
|
| 1929 |
+
|
| 1930 |
+
|
| 1931 |
+
def resize_height(img, H):
|
| 1932 |
+
w, h = img.size
|
| 1933 |
+
asp_ratio = w / h
|
| 1934 |
+
W = np.ceil(asp_ratio * H).astype(int)
|
| 1935 |
+
return img.resize((W, H))
|
| 1936 |
+
|
| 1937 |
+
|
| 1938 |
+
def resize_width(img, W):
|
| 1939 |
+
w, h = img.size
|
| 1940 |
+
asp_ratio = w / h
|
| 1941 |
+
H = int(W / asp_ratio)
|
| 1942 |
+
return img.resize((W, H))
|
| 1943 |
+
|
| 1944 |
+
|
| 1945 |
+
def resized_minor_side(img, size=256):
|
| 1946 |
+
H, W = img.size
|
| 1947 |
+
if H < W:
|
| 1948 |
+
H_new = size
|
| 1949 |
+
W_new = int(size * W / H)
|
| 1950 |
+
return img.resize((W_new, H_new))
|
| 1951 |
+
else:
|
| 1952 |
+
W_new = size
|
| 1953 |
+
H_new = int(size * H / W)
|
| 1954 |
+
return img.resize((W_new, H_new))
|
| 1955 |
+
|
| 1956 |
+
|
| 1957 |
+
def brighten_image(img, alpha=1.2):
|
| 1958 |
+
enhancer = PIL.ImageEnhance.Brightness(img)
|
| 1959 |
+
img = enhancer.enhance(alpha)
|
| 1960 |
+
return img
|
| 1961 |
+
|
| 1962 |
+
|
| 1963 |
+
def darken_image(img, alpha=0.8):
|
| 1964 |
+
enhancer = PIL.ImageEnhance.Brightness(img)
|
| 1965 |
+
img = enhancer.enhance(alpha)
|
| 1966 |
+
return img
|
| 1967 |
+
|
| 1968 |
+
|
| 1969 |
+
def fig2img(fig):
|
| 1970 |
+
"""Convert a Matplotlib figure to a PIL Image and return it"""
|
| 1971 |
+
import io
|
| 1972 |
+
buf = io.BytesIO()
|
| 1973 |
+
fig.savefig(buf)
|
| 1974 |
+
buf.seek(0)
|
| 1975 |
+
img = Image.open(buf)
|
| 1976 |
+
return img
|
| 1977 |
+
|
| 1978 |
+
|
| 1979 |
+
def show_temporal_tsne(
|
| 1980 |
+
tsne,
|
| 1981 |
+
timestamps=None,
|
| 1982 |
+
title="tSNE: feature vectors over time",
|
| 1983 |
+
cmap='viridis',
|
| 1984 |
+
ax=None,
|
| 1985 |
+
fig=None,
|
| 1986 |
+
show=True,
|
| 1987 |
+
num_ticks=10,
|
| 1988 |
+
return_as_pil=False,
|
| 1989 |
+
dpi=100,
|
| 1990 |
+
label='Time (s)',
|
| 1991 |
+
figsize=(6, 4),
|
| 1992 |
+
s=None,
|
| 1993 |
+
):
|
| 1994 |
+
|
| 1995 |
+
if timestamps is None:
|
| 1996 |
+
timestamps = np.arange(len(tsne))
|
| 1997 |
+
|
| 1998 |
+
if ax is None or fig is None:
|
| 1999 |
+
fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)
|
| 2000 |
+
|
| 2001 |
+
cmap = plt.get_cmap(cmap)
|
| 2002 |
+
scatter = ax.scatter(
|
| 2003 |
+
tsne[:, 0], tsne[:, 1], c=np.arange(len(tsne)), cmap=cmap, s=s,
|
| 2004 |
+
edgecolor='k', linewidth=0.5,
|
| 2005 |
+
)
|
| 2006 |
+
|
| 2007 |
+
ax.grid(alpha=0.4)
|
| 2008 |
+
ax.set_title(f"{title}", fontsize=11)
|
| 2009 |
+
ax.set_xlabel("$z_{1}$")
|
| 2010 |
+
ax.set_ylabel("$z_{2}$")
|
| 2011 |
+
|
| 2012 |
+
# Create a colorbar
|
| 2013 |
+
cbar = fig.colorbar(scatter, ax=ax, label=label)
|
| 2014 |
+
|
| 2015 |
+
# Set custom ticks and labels on the colorbar
|
| 2016 |
+
ticks = np.linspace(0, len(tsne) - 1, num_ticks, dtype=int)
|
| 2017 |
+
tick_labels = np.round(timestamps[ticks], 1)
|
| 2018 |
+
cbar.set_ticks(ticks)
|
| 2019 |
+
cbar.set_ticklabels(tick_labels)
|
| 2020 |
+
|
| 2021 |
+
if show:
|
| 2022 |
+
plt.show()
|
| 2023 |
+
else:
|
| 2024 |
+
if return_as_pil:
|
| 2025 |
+
plt.tight_layout(pad=0.2)
|
| 2026 |
+
# fig.canvas.draw()
|
| 2027 |
+
# image = PIL.Image.frombytes(
|
| 2028 |
+
# 'RGB',
|
| 2029 |
+
# fig.canvas.get_width_height(),
|
| 2030 |
+
# fig.canvas.tostring_rgb(),
|
| 2031 |
+
# )
|
| 2032 |
+
# return image
|
| 2033 |
+
|
| 2034 |
+
# Return as PIL Image without displaying the plt figure
|
| 2035 |
+
image = fig2img(fig)
|
| 2036 |
+
plt.close(fig)
|
| 2037 |
+
return image
|
| 2038 |
+
|
| 2039 |
+
|
| 2040 |
+
def mark_keypoints(image, keypoints, color=(255, 255, 0), radius=1):
|
| 2041 |
+
"""
|
| 2042 |
+
Marks keypoints on an image with a given color and radius.
|
| 2043 |
+
|
| 2044 |
+
:param image: The input PIL image.
|
| 2045 |
+
:param keypoints: A list of (x, y) tuples representing the keypoints.
|
| 2046 |
+
:param color: The color to use for the keypoints (default: red).
|
| 2047 |
+
:param radius: The radius of the circle to draw for each keypoint (default: 5).
|
| 2048 |
+
:return: A new PIL image with the keypoints marked.
|
| 2049 |
+
"""
|
| 2050 |
+
# Make a copy of the image to avoid modifying the original
|
| 2051 |
+
image_copy = image.copy()
|
| 2052 |
+
|
| 2053 |
+
# Create a draw object to add graphical elements
|
| 2054 |
+
draw = ImageDraw.Draw(image_copy)
|
| 2055 |
+
|
| 2056 |
+
# Loop through each keypoint and draw a circle
|
| 2057 |
+
for x, y in keypoints:
|
| 2058 |
+
# Draw a circle with the specified radius and color
|
| 2059 |
+
draw.ellipse(
|
| 2060 |
+
(x - radius, y - radius, x + radius, y + radius),
|
| 2061 |
+
fill=color,
|
| 2062 |
+
width=2
|
| 2063 |
+
)
|
| 2064 |
+
|
| 2065 |
+
return image_copy
|
| 2066 |
+
|
| 2067 |
+
|
| 2068 |
+
def draw_line_on_image(image, x_coords, y_coords, color=(255, 255, 0), width=3):
|
| 2069 |
+
"""
|
| 2070 |
+
Draws a line on an image given lists of x and y coordinates.
|
| 2071 |
+
|
| 2072 |
+
:param image: The input PIL image.
|
| 2073 |
+
:param x_coords: List of x-coordinates for the line.
|
| 2074 |
+
:param y_coords: List of y-coordinates for the line.
|
| 2075 |
+
:param color: Color of the line in RGB (default is red).
|
| 2076 |
+
:param width: Width of the line (default is 3).
|
| 2077 |
+
:return: The PIL image with the line drawn.
|
| 2078 |
+
"""
|
| 2079 |
+
image = image.copy()
|
| 2080 |
+
|
| 2081 |
+
# Ensure the number of x and y coordinates are the same
|
| 2082 |
+
if len(x_coords) != len(y_coords):
|
| 2083 |
+
raise ValueError("x_coords and y_coords must have the same length")
|
| 2084 |
+
|
| 2085 |
+
# Create a draw object to draw on the image
|
| 2086 |
+
draw = ImageDraw.Draw(image)
|
| 2087 |
+
|
| 2088 |
+
# Create a list of (x, y) coordinate tuples
|
| 2089 |
+
coordinates = list(zip(x_coords, y_coords))
|
| 2090 |
+
|
| 2091 |
+
# Draw the line connecting the coordinates
|
| 2092 |
+
draw.line(coordinates, fill=color, width=width)
|
| 2093 |
+
|
| 2094 |
+
return image
|
| 2095 |
+
|
| 2096 |
+
|
| 2097 |
+
def add_binary_strip_vertically(
|
| 2098 |
+
image,
|
| 2099 |
+
binary_vector,
|
| 2100 |
+
strip_width=15,
|
| 2101 |
+
one_color="yellow",
|
| 2102 |
+
zero_color="gray",
|
| 2103 |
+
):
|
| 2104 |
+
"""
|
| 2105 |
+
Add a binary strip to the right side of an image.
|
| 2106 |
+
|
| 2107 |
+
:param image: PIL Image to which the strip will be added.
|
| 2108 |
+
:param binary_vector: Binary vector of length 512 representing the strip.
|
| 2109 |
+
:param strip_width: Width of the strip to be added.
|
| 2110 |
+
:param one_color: Color for "1" pixels (default: red).
|
| 2111 |
+
:param zero_color: Color for "0" pixels (default: white).
|
| 2112 |
+
:return: New image with the binary strip added on the right side.
|
| 2113 |
+
"""
|
| 2114 |
+
one_color = PIL.ImageColor.getrgb(one_color)
|
| 2115 |
+
zero_color = PIL.ImageColor.getrgb(zero_color)
|
| 2116 |
+
|
| 2117 |
+
height = image.height
|
| 2118 |
+
if len(binary_vector) != height:
|
| 2119 |
+
raise ValueError("Binary vector must be of length 512")
|
| 2120 |
+
|
| 2121 |
+
# Create a new strip with the specified width and 512 height
|
| 2122 |
+
strip = PIL.Image.new("RGB", (strip_width, height))
|
| 2123 |
+
|
| 2124 |
+
# Fill the strip based on the binary vector
|
| 2125 |
+
pixels = strip.load()
|
| 2126 |
+
for i in range(height):
|
| 2127 |
+
color = one_color if binary_vector[i] == 1 else zero_color
|
| 2128 |
+
for w in range(strip_width):
|
| 2129 |
+
pixels[w, i] = color
|
| 2130 |
+
|
| 2131 |
+
# Combine the original image with the new strip
|
| 2132 |
+
# new_image = PIL.Image.new("RGB", (image.width + strip_width, height))
|
| 2133 |
+
# new_image.paste(image, (0, 0))
|
| 2134 |
+
# new_image.paste(strip, (image.width, 0))
|
| 2135 |
+
new_image = image.copy()
|
| 2136 |
+
new_image.paste(strip, (image.width - strip_width, 0))
|
| 2137 |
+
|
| 2138 |
+
return new_image
|
| 2139 |
+
|
| 2140 |
+
|
| 2141 |
+
def add_binary_strip_horizontally(
|
| 2142 |
+
image,
|
| 2143 |
+
binary_vector,
|
| 2144 |
+
strip_height=15,
|
| 2145 |
+
one_color="limegreen",
|
| 2146 |
+
zero_color="gray",
|
| 2147 |
+
):
|
| 2148 |
+
"""
|
| 2149 |
+
Add a binary strip to the top of an image.
|
| 2150 |
+
|
| 2151 |
+
:param image: PIL Image to which the strip will be added.
|
| 2152 |
+
:param binary_vector: Binary vector of length 512 representing the strip.
|
| 2153 |
+
:param strip_height: Height of the strip to be added.
|
| 2154 |
+
:param one_color: Color for "1" pixels, accepts color names or hex (default: red).
|
| 2155 |
+
:param zero_color: Color for "0" pixels, accepts color names or hex (default: white).
|
| 2156 |
+
:return: New image with the binary strip added at the top.
|
| 2157 |
+
"""
|
| 2158 |
+
width = image.width
|
| 2159 |
+
if len(binary_vector) != width:
|
| 2160 |
+
raise ValueError("Binary vector must be of length 512")
|
| 2161 |
+
|
| 2162 |
+
# Convert colors to RGB tuples
|
| 2163 |
+
one_color_rgb = PIL.ImageColor.getrgb(one_color)
|
| 2164 |
+
zero_color_rgb = PIL.ImageColor.getrgb(zero_color)
|
| 2165 |
+
|
| 2166 |
+
# Create a new strip with the specified height and 512 width
|
| 2167 |
+
strip = PIL.Image.new("RGB", (width, strip_height))
|
| 2168 |
+
|
| 2169 |
+
# Fill the strip based on the binary vector
|
| 2170 |
+
pixels = strip.load()
|
| 2171 |
+
for i in range(width):
|
| 2172 |
+
color = one_color_rgb if binary_vector[i] == 1 else zero_color_rgb
|
| 2173 |
+
for h in range(strip_height):
|
| 2174 |
+
pixels[i, h] = color
|
| 2175 |
+
|
| 2176 |
+
# Combine the original image with the new strip
|
| 2177 |
+
# new_image = PIL.Image.new("RGB", (width, image.height + strip_height))
|
| 2178 |
+
# new_image.paste(strip, (0, 0))
|
| 2179 |
+
# new_image.paste(image, (0, strip_height))
|
| 2180 |
+
new_image = image.copy()
|
| 2181 |
+
new_image.paste(strip, (0, 0))
|
| 2182 |
+
|
| 2183 |
+
return new_image
|
| 2184 |
+
|
| 2185 |
+
|
| 2186 |
+
# Define a function to increase font sizes for a specific plot
|
| 2187 |
+
def increase_font_sizes(ax, font_scale=1.6):
|
| 2188 |
+
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
|
| 2189 |
+
ax.get_xticklabels() + ax.get_yticklabels()):
|
| 2190 |
+
item.set_fontsize(item.get_fontsize() * font_scale)
|
| 2191 |
+
|
| 2192 |
+
|
| 2193 |
+
|
| 2194 |
+
def cut_fraction_of_bbox(image, box, frac=0.7):
|
| 2195 |
+
"""
|
| 2196 |
+
Cuts the image such that the box occupies a fraction of the image.
|
| 2197 |
+
"""
|
| 2198 |
+
W, H = image.size
|
| 2199 |
+
x1, y1, x2, y2 = box
|
| 2200 |
+
w = x2 - x1
|
| 2201 |
+
h = y2 - y1
|
| 2202 |
+
new_w = int(w / frac)
|
| 2203 |
+
new_h = int(h / frac)
|
| 2204 |
+
x1_new = max(0, x1 - (new_w - w) // 2)
|
| 2205 |
+
x2_new = min(W, x2 + (new_w - w) // 2)
|
| 2206 |
+
y1_new = max(0, y1 - (new_h - h) // 2)
|
| 2207 |
+
y2_new = min(H, y2 + (new_h - h) // 2)
|
| 2208 |
+
return image.crop((x1_new, y1_new, x2_new, y2_new))
|