Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # -*- coding: utf-8 -*- | |
| # flake8: noqa E501 | |
| import shutil | |
| import gradio as gr | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns | |
| from huggingface_hub import snapshot_download | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_REQUESTS_TEXT, | |
| EVALUATION_SCRIPT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| ModelType, | |
| Precision, | |
| WeightType, | |
| fields, | |
| ) | |
| from src.envs import ( | |
| API, | |
| CACHE_PATH, | |
| EVAL_REQUESTS_PATH, | |
| EVAL_RESULTS_PATH, | |
| REPO_ID, | |
| REQUESTS_REPO, | |
| RESULTS_REPO, | |
| TOKEN, | |
| ) | |
| from src.populate import get_evaluation_requests_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| # Space initialisation | |
| shutil.rmtree(CACHE_PATH, ignore_errors=True) | |
| try: | |
| snapshot_download( | |
| repo_id=REQUESTS_REPO, | |
| local_dir=EVAL_REQUESTS_PATH, | |
| repo_type="dataset", | |
| tqdm_class=None, | |
| etag_timeout=30, | |
| token=TOKEN, | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, | |
| local_dir=EVAL_RESULTS_PATH, | |
| repo_type="dataset", | |
| tqdm_class=None, | |
| etag_timeout=30, | |
| token=TOKEN, | |
| ) | |
| except Exception: | |
| restart_space() | |
| LEADERBOARD_DF = get_leaderboard_df( | |
| EVAL_RESULTS_PATH, | |
| EVAL_REQUESTS_PATH, | |
| COLS, | |
| BENCHMARK_COLS, | |
| ) | |
| ( | |
| finished_eval_requests_df, | |
| running_eval_requests_df, | |
| pending_eval_requests_df, | |
| ) = get_evaluation_requests_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| def init_leaderboard(dataframe): | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[c.type for c in fields(AutoEvalColumn)], | |
| select_columns=SelectColumns( | |
| default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
| cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
| label="Columns", | |
| ), | |
| search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name], | |
| hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
| filter_columns=[ | |
| ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Floating-point format"), | |
| ColumnFilter( | |
| AutoEvalColumn.params.name, | |
| type="slider", | |
| min=1, | |
| max=500, | |
| label="Number of parameters (billions)", | |
| ), | |
| ], | |
| bool_checkboxgroup_label=' ', | |
| interactive=False, | |
| ) | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π Ranking", elem_id="llm-benchmark-tab-table", id=0): | |
| leaderboard = init_leaderboard(LEADERBOARD_DF) | |
| with gr.TabItem("π§ About", elem_id="llm-benchmark-tab-table", id=2): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.Accordion( | |
| "Evaluation script", | |
| open=False, | |
| ): | |
| gr.Markdown( | |
| EVALUATION_SCRIPT, | |
| elem_classes="markdown-text", | |
| ) | |
| with gr.TabItem("π§ͺ Submissions", elem_id="llm-benchmark-tab-table", id=3): | |
| with gr.Column(): | |
| with gr.Row(): | |
| gr.Markdown(EVALUATION_REQUESTS_TEXT, elem_classes="markdown-text") | |
| with gr.Column(): | |
| with gr.Accordion( | |
| f"β Finished ({len(finished_eval_requests_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| finished_eval_table = gr.components.Dataframe( | |
| value=finished_eval_requests_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"β³ Pending ({len(pending_eval_requests_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| pending_eval_table = gr.components.Dataframe( | |
| value=pending_eval_requests_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("# βοΈ Submission", elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
| model_type = gr.Dropdown( | |
| choices=[t.to_str(" ") for t in ModelType if t in [ModelType.PT, ModelType.FT]], | |
| label="Model type", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| # precision = gr.Dropdown( | |
| # choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
| # label="Precision", | |
| # multiselect=False, | |
| # value="bfloat16", | |
| # interactive=True, | |
| # ) | |
| # weight_type = gr.Dropdown( | |
| # choices=[i.value.name for i in WeightType], | |
| # label="Weights type", | |
| # multiselect=False, | |
| # value="Original", | |
| # interactive=True, | |
| # ) | |
| # base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
| submit_button = gr.Button("Submit") | |
| submission_result = gr.Markdown() | |
| def submit_with_braindao_check(model_name, revision, model_type): | |
| if model_name.split("/")[0] == "braindao": | |
| model_type = ModelType.BrainDAO.to_str(" ") | |
| return add_new_eval(model_name, revision, model_type) | |
| submit_button.click( | |
| submit_with_braindao_check, | |
| [ | |
| model_name_textbox, | |
| # base_model_name_textbox, | |
| revision_name_textbox, | |
| # precision, | |
| # weight_type, | |
| model_type, | |
| ], | |
| submission_result, | |
| ) | |
| # with gr.Row(): | |
| # with gr.Accordion("π Citation", open=False): | |
| # citation_button = gr.Textbox( | |
| # value=CITATION_BUTTON_TEXT, | |
| # label=CITATION_BUTTON_LABEL, | |
| # lines=20, | |
| # elem_id="citation-button", | |
| # show_copy_button=True, | |
| # ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=900) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch( | |
| server_name="0.0.0.0", | |
| allowed_paths=["images/solbench.svg"], | |
| ) | |