Spaces:
Running
Running
bravedims
commited on
Commit
·
bd1f2b1
1
Parent(s):
763d982
Deploy OmniAvatar-14B with ElevenLabs TTS integration to Hugging Face Spaces
Browse files- Dockerfile +51 -0
- README.md +65 -5
- app.py +482 -0
- configs/inference.yaml +35 -0
- download_models.sh +21 -0
- elevenlabs_integration.py +182 -0
- examples/infer_samples.txt +3 -0
- requirements.txt +44 -0
- scripts/inference.py +77 -0
Dockerfile
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# Use NVIDIA PyTorch base image for GPU support
|
3 |
+
FROM pytorch/pytorch:2.1.0-cuda12.1-cudnn8-devel
|
4 |
+
|
5 |
+
# Create user as required by HF Spaces
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
|
8 |
+
# Install system dependencies
|
9 |
+
RUN apt-get update && apt-get install -y \
|
10 |
+
git \
|
11 |
+
wget \
|
12 |
+
curl \
|
13 |
+
libgl1-mesa-glx \
|
14 |
+
libglib2.0-0 \
|
15 |
+
libsm6 \
|
16 |
+
libxext6 \
|
17 |
+
libxrender-dev \
|
18 |
+
libgomp1 \
|
19 |
+
libgoogle-perftools4 \
|
20 |
+
libtcmalloc-minimal4 \
|
21 |
+
ffmpeg \
|
22 |
+
&& apt-get clean \
|
23 |
+
&& rm -rf /var/lib/apt/lists/*
|
24 |
+
|
25 |
+
# Switch to user
|
26 |
+
USER user
|
27 |
+
|
28 |
+
# Set environment variables for user
|
29 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
30 |
+
ENV PYTHONPATH=/app
|
31 |
+
ENV GRADIO_SERVER_NAME=0.0.0.0
|
32 |
+
ENV GRADIO_SERVER_PORT=7860
|
33 |
+
|
34 |
+
# Set working directory
|
35 |
+
WORKDIR /app
|
36 |
+
|
37 |
+
# Copy requirements and install Python dependencies
|
38 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
39 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
40 |
+
|
41 |
+
# Copy application code
|
42 |
+
COPY --chown=user . /app
|
43 |
+
|
44 |
+
# Create necessary directories
|
45 |
+
RUN mkdir -p pretrained_models outputs
|
46 |
+
|
47 |
+
# Expose port (required by HF Spaces to be 7860)
|
48 |
+
EXPOSE 7860
|
49 |
+
|
50 |
+
# Start the application
|
51 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
@@ -1,11 +1,71 @@
|
|
1 |
-
---
|
2 |
title: AI Avatar Chat
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
|
|
|
1 |
+
---
|
2 |
title: AI Avatar Chat
|
3 |
+
emoji: 🎭
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
9 |
+
suggested_hardware: t4-medium
|
10 |
+
suggested_storage: medium
|
11 |
+
---
|
12 |
+
|
13 |
+
# 🎭 OmniAvatar-14B with ElevenLabs TTS
|
14 |
+
|
15 |
+
An advanced AI avatar generation system that creates realistic talking avatars from text prompts and speech. This space combines the power of OmniAvatar-14B with ElevenLabs text-to-speech for seamless avatar creation.
|
16 |
+
|
17 |
+
## ✨ Features
|
18 |
+
|
19 |
+
- **🎯 Text-to-Avatar Generation**: Generate avatars from descriptive text prompts
|
20 |
+
- **🗣️ ElevenLabs Integration**: High-quality text-to-speech synthesis
|
21 |
+
- **🎵 Audio URL Support**: Use pre-generated audio files
|
22 |
+
- **🖼️ Image Reference Support**: Guide avatar appearance with reference images
|
23 |
+
- **⚡ Real-time Processing**: Fast generation with GPU acceleration
|
24 |
+
- **🎨 Customizable Parameters**: Fine-tune generation quality and lip-sync
|
25 |
+
|
26 |
+
## 🚀 How to Use
|
27 |
+
|
28 |
+
1. **Enter a Prompt**: Describe the character's behavior and appearance
|
29 |
+
2. **Choose Audio Source**:
|
30 |
+
- Enter text for automatic speech generation
|
31 |
+
- OR provide a direct audio URL
|
32 |
+
3. **Optional**: Add a reference image URL
|
33 |
+
4. **Customize**: Adjust voice, guidance scale, and generation parameters
|
34 |
+
5. **Generate**: Create your avatar video!
|
35 |
+
|
36 |
+
## 🛠️ Parameters
|
37 |
+
|
38 |
+
- **Guidance Scale** (4-6 recommended): Controls how closely the model follows your prompt
|
39 |
+
- **Audio Scale** (3-5 recommended): Higher values improve lip-sync accuracy
|
40 |
+
- **Number of Steps** (20-50 recommended): More steps = higher quality, longer processing time
|
41 |
+
|
42 |
+
## 📝 Example Prompts
|
43 |
+
|
44 |
+
- "A professional teacher explaining a mathematical concept with clear gestures"
|
45 |
+
- "A friendly presenter speaking confidently to an audience"
|
46 |
+
- "A news anchor delivering the morning headlines with professional demeanor"
|
47 |
+
|
48 |
+
## 🔧 Technical Details
|
49 |
+
|
50 |
+
- **Model**: OmniAvatar-14B for video generation
|
51 |
+
- **TTS**: ElevenLabs API for high-quality speech synthesis
|
52 |
+
- **Framework**: FastAPI + Gradio interface
|
53 |
+
- **GPU**: Optimized for T4 and higher
|
54 |
+
|
55 |
+
## 🎮 API Endpoints
|
56 |
+
|
57 |
+
- `GET /health` - Check system status
|
58 |
+
- `POST /generate` - Generate avatar video
|
59 |
+
- `/gradio` - Interactive web interface
|
60 |
+
|
61 |
+
## 🔐 Environment Variables
|
62 |
+
|
63 |
+
The space uses ElevenLabs for text-to-speech. For optimal performance, configure your ElevenLabs API key as a secret.
|
64 |
+
|
65 |
+
## 📄 License
|
66 |
+
|
67 |
+
Apache 2.0 - See LICENSE file for details
|
68 |
+
|
69 |
---
|
70 |
|
71 |
+
*Powered by OmniAvatar-14B and ElevenLabs TTS*
|
app.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import tempfile
|
4 |
+
import gradio as gr
|
5 |
+
from fastapi import FastAPI, HTTPException
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
from pydantic import BaseModel, HttpUrl
|
8 |
+
import subprocess
|
9 |
+
import json
|
10 |
+
from pathlib import Path
|
11 |
+
import logging
|
12 |
+
import requests
|
13 |
+
from urllib.parse import urlparse
|
14 |
+
from PIL import Image
|
15 |
+
import io
|
16 |
+
from typing import Optional
|
17 |
+
import aiohttp
|
18 |
+
import asyncio
|
19 |
+
from dotenv import load_dotenv
|
20 |
+
|
21 |
+
# Load environment variables
|
22 |
+
load_dotenv()
|
23 |
+
|
24 |
+
# Set up logging
|
25 |
+
logging.basicConfig(level=logging.INFO)
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
app = FastAPI(title="OmniAvatar-14B API with ElevenLabs", version="1.0.0")
|
29 |
+
|
30 |
+
# Add CORS middleware
|
31 |
+
app.add_middleware(
|
32 |
+
CORSMiddleware,
|
33 |
+
allow_origins=["*"],
|
34 |
+
allow_credentials=True,
|
35 |
+
allow_methods=["*"],
|
36 |
+
allow_headers=["*"],
|
37 |
+
)
|
38 |
+
|
39 |
+
# Pydantic models for request/response
|
40 |
+
class GenerateRequest(BaseModel):
|
41 |
+
prompt: str
|
42 |
+
text_to_speech: Optional[str] = None # Text to convert to speech
|
43 |
+
elevenlabs_audio_url: Optional[HttpUrl] = None # Direct audio URL
|
44 |
+
voice_id: Optional[str] = "21m00Tcm4TlvDq8ikWAM" # Default ElevenLabs voice
|
45 |
+
image_url: Optional[HttpUrl] = None
|
46 |
+
guidance_scale: float = 5.0
|
47 |
+
audio_scale: float = 3.0
|
48 |
+
num_steps: int = 30
|
49 |
+
sp_size: int = 1
|
50 |
+
tea_cache_l1_thresh: Optional[float] = None
|
51 |
+
|
52 |
+
class GenerateResponse(BaseModel):
|
53 |
+
message: str
|
54 |
+
output_path: str
|
55 |
+
processing_time: float
|
56 |
+
audio_generated: bool = False
|
57 |
+
|
58 |
+
class ElevenLabsClient:
|
59 |
+
def __init__(self, api_key: str = None):
|
60 |
+
self.api_key = api_key or os.getenv("ELEVENLABS_API_KEY", "sk_c7a0b115cd48fc026226158c5ac87755b063c802ad892de6")
|
61 |
+
self.base_url = "https://api.elevenlabs.io/v1"
|
62 |
+
|
63 |
+
async def text_to_speech(self, text: str, voice_id: str = "21m00Tcm4TlvDq8ikWAM") -> str:
|
64 |
+
"""Convert text to speech using ElevenLabs and return temporary file path"""
|
65 |
+
url = f"{self.base_url}/text-to-speech/{voice_id}"
|
66 |
+
|
67 |
+
headers = {
|
68 |
+
"Accept": "audio/mpeg",
|
69 |
+
"Content-Type": "application/json",
|
70 |
+
"xi-api-key": self.api_key
|
71 |
+
}
|
72 |
+
|
73 |
+
data = {
|
74 |
+
"text": text,
|
75 |
+
"model_id": "eleven_monolingual_v1",
|
76 |
+
"voice_settings": {
|
77 |
+
"stability": 0.5,
|
78 |
+
"similarity_boost": 0.5
|
79 |
+
}
|
80 |
+
}
|
81 |
+
|
82 |
+
try:
|
83 |
+
async with aiohttp.ClientSession() as session:
|
84 |
+
async with session.post(url, headers=headers, json=data) as response:
|
85 |
+
if response.status != 200:
|
86 |
+
error_text = await response.text()
|
87 |
+
raise HTTPException(
|
88 |
+
status_code=400,
|
89 |
+
detail=f"ElevenLabs API error: {response.status} - {error_text}"
|
90 |
+
)
|
91 |
+
|
92 |
+
audio_content = await response.read()
|
93 |
+
|
94 |
+
# Save to temporary file
|
95 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
|
96 |
+
temp_file.write(audio_content)
|
97 |
+
temp_file.close()
|
98 |
+
|
99 |
+
logger.info(f"Generated speech audio: {temp_file.name}")
|
100 |
+
return temp_file.name
|
101 |
+
|
102 |
+
except aiohttp.ClientError as e:
|
103 |
+
logger.error(f"Network error calling ElevenLabs: {e}")
|
104 |
+
raise HTTPException(status_code=400, detail=f"Network error calling ElevenLabs: {e}")
|
105 |
+
except Exception as e:
|
106 |
+
logger.error(f"Error generating speech: {e}")
|
107 |
+
raise HTTPException(status_code=500, detail=f"Error generating speech: {e}")
|
108 |
+
|
109 |
+
class OmniAvatarAPI:
|
110 |
+
def __init__(self):
|
111 |
+
self.model_loaded = False
|
112 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
113 |
+
self.elevenlabs_client = ElevenLabsClient()
|
114 |
+
logger.info(f"Using device: {self.device}")
|
115 |
+
logger.info(f"ElevenLabs API Key configured: {'Yes' if self.elevenlabs_client.api_key else 'No'}")
|
116 |
+
|
117 |
+
def load_model(self):
|
118 |
+
"""Load the OmniAvatar model"""
|
119 |
+
try:
|
120 |
+
# Check if models are downloaded
|
121 |
+
model_paths = [
|
122 |
+
"./pretrained_models/Wan2.1-T2V-14B",
|
123 |
+
"./pretrained_models/OmniAvatar-14B",
|
124 |
+
"./pretrained_models/wav2vec2-base-960h"
|
125 |
+
]
|
126 |
+
|
127 |
+
for path in model_paths:
|
128 |
+
if not os.path.exists(path):
|
129 |
+
logger.error(f"Model path not found: {path}")
|
130 |
+
return False
|
131 |
+
|
132 |
+
self.model_loaded = True
|
133 |
+
logger.info("Models loaded successfully")
|
134 |
+
return True
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
logger.error(f"Error loading model: {str(e)}")
|
138 |
+
return False
|
139 |
+
|
140 |
+
async def download_file(self, url: str, suffix: str = "") -> str:
|
141 |
+
"""Download file from URL and save to temporary location"""
|
142 |
+
try:
|
143 |
+
async with aiohttp.ClientSession() as session:
|
144 |
+
async with session.get(str(url)) as response:
|
145 |
+
if response.status != 200:
|
146 |
+
raise HTTPException(status_code=400, detail=f"Failed to download file from URL: {url}")
|
147 |
+
|
148 |
+
content = await response.read()
|
149 |
+
|
150 |
+
# Create temporary file
|
151 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
|
152 |
+
temp_file.write(content)
|
153 |
+
temp_file.close()
|
154 |
+
|
155 |
+
return temp_file.name
|
156 |
+
|
157 |
+
except aiohttp.ClientError as e:
|
158 |
+
logger.error(f"Network error downloading {url}: {e}")
|
159 |
+
raise HTTPException(status_code=400, detail=f"Network error downloading file: {e}")
|
160 |
+
except Exception as e:
|
161 |
+
logger.error(f"Error downloading file from {url}: {e}")
|
162 |
+
raise HTTPException(status_code=500, detail=f"Error downloading file: {e}")
|
163 |
+
|
164 |
+
def validate_audio_url(self, url: str) -> bool:
|
165 |
+
"""Validate if URL is likely an audio file"""
|
166 |
+
try:
|
167 |
+
parsed = urlparse(url)
|
168 |
+
# Check for common audio file extensions or ElevenLabs patterns
|
169 |
+
audio_extensions = ['.mp3', '.wav', '.m4a', '.ogg', '.aac']
|
170 |
+
is_audio_ext = any(parsed.path.lower().endswith(ext) for ext in audio_extensions)
|
171 |
+
is_elevenlabs = 'elevenlabs' in parsed.netloc.lower()
|
172 |
+
|
173 |
+
return is_audio_ext or is_elevenlabs or 'audio' in url.lower()
|
174 |
+
except:
|
175 |
+
return False
|
176 |
+
|
177 |
+
def validate_image_url(self, url: str) -> bool:
|
178 |
+
"""Validate if URL is likely an image file"""
|
179 |
+
try:
|
180 |
+
parsed = urlparse(url)
|
181 |
+
image_extensions = ['.jpg', '.jpeg', '.png', '.webp', '.bmp', '.gif']
|
182 |
+
return any(parsed.path.lower().endswith(ext) for ext in image_extensions)
|
183 |
+
except:
|
184 |
+
return False
|
185 |
+
|
186 |
+
async def generate_avatar(self, request: GenerateRequest) -> tuple[str, float, bool]:
|
187 |
+
"""Generate avatar video from prompt and audio/text"""
|
188 |
+
import time
|
189 |
+
start_time = time.time()
|
190 |
+
audio_generated = False
|
191 |
+
|
192 |
+
try:
|
193 |
+
# Determine audio source
|
194 |
+
audio_path = None
|
195 |
+
|
196 |
+
if request.text_to_speech:
|
197 |
+
# Generate speech from text using ElevenLabs
|
198 |
+
logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...")
|
199 |
+
audio_path = await self.elevenlabs_client.text_to_speech(
|
200 |
+
request.text_to_speech,
|
201 |
+
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
202 |
+
)
|
203 |
+
audio_generated = True
|
204 |
+
|
205 |
+
elif request.elevenlabs_audio_url:
|
206 |
+
# Download audio from provided URL
|
207 |
+
logger.info(f"Downloading audio from URL: {request.elevenlabs_audio_url}")
|
208 |
+
if not self.validate_audio_url(str(request.elevenlabs_audio_url)):
|
209 |
+
logger.warning(f"Audio URL may not be valid: {request.elevenlabs_audio_url}")
|
210 |
+
|
211 |
+
audio_path = await self.download_file(str(request.elevenlabs_audio_url), ".mp3")
|
212 |
+
|
213 |
+
else:
|
214 |
+
raise HTTPException(
|
215 |
+
status_code=400,
|
216 |
+
detail="Either text_to_speech or elevenlabs_audio_url must be provided"
|
217 |
+
)
|
218 |
+
|
219 |
+
# Download image if provided
|
220 |
+
image_path = None
|
221 |
+
if request.image_url:
|
222 |
+
logger.info(f"Downloading image from URL: {request.image_url}")
|
223 |
+
if not self.validate_image_url(str(request.image_url)):
|
224 |
+
logger.warning(f"Image URL may not be valid: {request.image_url}")
|
225 |
+
|
226 |
+
# Determine image extension from URL or default to .jpg
|
227 |
+
parsed = urlparse(str(request.image_url))
|
228 |
+
ext = os.path.splitext(parsed.path)[1] or ".jpg"
|
229 |
+
image_path = await self.download_file(str(request.image_url), ext)
|
230 |
+
|
231 |
+
# Create temporary input file for inference
|
232 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as f:
|
233 |
+
if image_path:
|
234 |
+
input_line = f"{request.prompt}@@{image_path}@@{audio_path}"
|
235 |
+
else:
|
236 |
+
input_line = f"{request.prompt}@@@@{audio_path}"
|
237 |
+
f.write(input_line)
|
238 |
+
temp_input_file = f.name
|
239 |
+
|
240 |
+
# Prepare inference command
|
241 |
+
cmd = [
|
242 |
+
"python", "-m", "torch.distributed.run",
|
243 |
+
"--standalone", f"--nproc_per_node={request.sp_size}",
|
244 |
+
"scripts/inference.py",
|
245 |
+
"--config", "configs/inference.yaml",
|
246 |
+
"--input_file", temp_input_file,
|
247 |
+
"--guidance_scale", str(request.guidance_scale),
|
248 |
+
"--audio_scale", str(request.audio_scale),
|
249 |
+
"--num_steps", str(request.num_steps)
|
250 |
+
]
|
251 |
+
|
252 |
+
if request.tea_cache_l1_thresh:
|
253 |
+
cmd.extend(["--tea_cache_l1_thresh", str(request.tea_cache_l1_thresh)])
|
254 |
+
|
255 |
+
logger.info(f"Running inference with command: {' '.join(cmd)}")
|
256 |
+
|
257 |
+
# Run inference
|
258 |
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
259 |
+
|
260 |
+
# Clean up temporary files
|
261 |
+
os.unlink(temp_input_file)
|
262 |
+
os.unlink(audio_path)
|
263 |
+
if image_path:
|
264 |
+
os.unlink(image_path)
|
265 |
+
|
266 |
+
if result.returncode != 0:
|
267 |
+
logger.error(f"Inference failed: {result.stderr}")
|
268 |
+
raise Exception(f"Inference failed: {result.stderr}")
|
269 |
+
|
270 |
+
# Find output video file
|
271 |
+
output_dir = "./outputs"
|
272 |
+
if os.path.exists(output_dir):
|
273 |
+
video_files = [f for f in os.listdir(output_dir) if f.endswith(('.mp4', '.avi'))]
|
274 |
+
if video_files:
|
275 |
+
# Return the most recent video file
|
276 |
+
video_files.sort(key=lambda x: os.path.getmtime(os.path.join(output_dir, x)), reverse=True)
|
277 |
+
output_path = os.path.join(output_dir, video_files[0])
|
278 |
+
processing_time = time.time() - start_time
|
279 |
+
return output_path, processing_time, audio_generated
|
280 |
+
|
281 |
+
raise Exception("No output video generated")
|
282 |
+
|
283 |
+
except Exception as e:
|
284 |
+
# Clean up any temporary files in case of error
|
285 |
+
try:
|
286 |
+
if 'audio_path' in locals() and audio_path and os.path.exists(audio_path):
|
287 |
+
os.unlink(audio_path)
|
288 |
+
if 'image_path' in locals() and image_path and os.path.exists(image_path):
|
289 |
+
os.unlink(image_path)
|
290 |
+
if 'temp_input_file' in locals() and os.path.exists(temp_input_file):
|
291 |
+
os.unlink(temp_input_file)
|
292 |
+
except:
|
293 |
+
pass
|
294 |
+
|
295 |
+
logger.error(f"Generation error: {str(e)}")
|
296 |
+
raise HTTPException(status_code=500, detail=str(e))
|
297 |
+
|
298 |
+
# Initialize API
|
299 |
+
omni_api = OmniAvatarAPI()
|
300 |
+
|
301 |
+
@app.on_event("startup")
|
302 |
+
async def startup_event():
|
303 |
+
"""Load model on startup"""
|
304 |
+
success = omni_api.load_model()
|
305 |
+
if not success:
|
306 |
+
logger.warning("Model loading failed on startup")
|
307 |
+
|
308 |
+
@app.get("/health")
|
309 |
+
async def health_check():
|
310 |
+
"""Health check endpoint"""
|
311 |
+
return {
|
312 |
+
"status": "healthy",
|
313 |
+
"model_loaded": omni_api.model_loaded,
|
314 |
+
"device": omni_api.device,
|
315 |
+
"supports_elevenlabs": True,
|
316 |
+
"supports_image_urls": True,
|
317 |
+
"supports_text_to_speech": True,
|
318 |
+
"elevenlabs_api_configured": bool(omni_api.elevenlabs_client.api_key)
|
319 |
+
}
|
320 |
+
|
321 |
+
@app.post("/generate", response_model=GenerateResponse)
|
322 |
+
async def generate_avatar(request: GenerateRequest):
|
323 |
+
"""Generate avatar video from prompt, text/audio, and optional image URL"""
|
324 |
+
|
325 |
+
if not omni_api.model_loaded:
|
326 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
327 |
+
|
328 |
+
logger.info(f"Generating avatar with prompt: {request.prompt}")
|
329 |
+
if request.text_to_speech:
|
330 |
+
logger.info(f"Text to speech: {request.text_to_speech[:100]}...")
|
331 |
+
logger.info(f"Voice ID: {request.voice_id}")
|
332 |
+
if request.elevenlabs_audio_url:
|
333 |
+
logger.info(f"Audio URL: {request.elevenlabs_audio_url}")
|
334 |
+
if request.image_url:
|
335 |
+
logger.info(f"Image URL: {request.image_url}")
|
336 |
+
|
337 |
+
try:
|
338 |
+
output_path, processing_time, audio_generated = await omni_api.generate_avatar(request)
|
339 |
+
|
340 |
+
return GenerateResponse(
|
341 |
+
message="Avatar generation completed successfully",
|
342 |
+
output_path=output_path,
|
343 |
+
processing_time=processing_time,
|
344 |
+
audio_generated=audio_generated
|
345 |
+
)
|
346 |
+
|
347 |
+
except HTTPException:
|
348 |
+
raise
|
349 |
+
except Exception as e:
|
350 |
+
logger.error(f"Unexpected error: {e}")
|
351 |
+
raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")
|
352 |
+
|
353 |
+
# Enhanced Gradio interface with text-to-speech option
|
354 |
+
def gradio_generate(prompt, text_to_speech, audio_url, image_url, voice_id, guidance_scale, audio_scale, num_steps):
|
355 |
+
"""Gradio interface wrapper with text-to-speech support"""
|
356 |
+
if not omni_api.model_loaded:
|
357 |
+
return "Error: Model not loaded"
|
358 |
+
|
359 |
+
try:
|
360 |
+
# Create request object
|
361 |
+
request_data = {
|
362 |
+
"prompt": prompt,
|
363 |
+
"guidance_scale": guidance_scale,
|
364 |
+
"audio_scale": audio_scale,
|
365 |
+
"num_steps": int(num_steps)
|
366 |
+
}
|
367 |
+
|
368 |
+
# Add audio source
|
369 |
+
if text_to_speech and text_to_speech.strip():
|
370 |
+
request_data["text_to_speech"] = text_to_speech
|
371 |
+
request_data["voice_id"] = voice_id or "21m00Tcm4TlvDq8ikWAM"
|
372 |
+
elif audio_url and audio_url.strip():
|
373 |
+
request_data["elevenlabs_audio_url"] = audio_url
|
374 |
+
else:
|
375 |
+
return "Error: Please provide either text to speech or audio URL"
|
376 |
+
|
377 |
+
if image_url and image_url.strip():
|
378 |
+
request_data["image_url"] = image_url
|
379 |
+
|
380 |
+
request = GenerateRequest(**request_data)
|
381 |
+
|
382 |
+
# Run async function in sync context
|
383 |
+
loop = asyncio.new_event_loop()
|
384 |
+
asyncio.set_event_loop(loop)
|
385 |
+
output_path, processing_time, audio_generated = loop.run_until_complete(omni_api.generate_avatar(request))
|
386 |
+
loop.close()
|
387 |
+
|
388 |
+
return output_path
|
389 |
+
|
390 |
+
except Exception as e:
|
391 |
+
logger.error(f"Gradio generation error: {e}")
|
392 |
+
return f"Error: {str(e)}"
|
393 |
+
|
394 |
+
# Updated Gradio interface with text-to-speech support
|
395 |
+
iface = gr.Interface(
|
396 |
+
fn=gradio_generate,
|
397 |
+
inputs=[
|
398 |
+
gr.Textbox(
|
399 |
+
label="Prompt",
|
400 |
+
placeholder="Describe the character behavior (e.g., 'A friendly person explaining a concept')",
|
401 |
+
lines=2
|
402 |
+
),
|
403 |
+
gr.Textbox(
|
404 |
+
label="Text to Speech",
|
405 |
+
placeholder="Enter text to convert to speech using ElevenLabs",
|
406 |
+
lines=3,
|
407 |
+
info="This will be converted to speech automatically"
|
408 |
+
),
|
409 |
+
gr.Textbox(
|
410 |
+
label="OR Audio URL",
|
411 |
+
placeholder="https://api.elevenlabs.io/v1/text-to-speech/...",
|
412 |
+
info="Direct URL to audio file (alternative to text-to-speech)"
|
413 |
+
),
|
414 |
+
gr.Textbox(
|
415 |
+
label="Image URL (Optional)",
|
416 |
+
placeholder="https://example.com/image.jpg",
|
417 |
+
info="Direct URL to reference image (JPG, PNG, etc.)"
|
418 |
+
),
|
419 |
+
gr.Dropdown(
|
420 |
+
choices=["21m00Tcm4TlvDq8ikWAM", "pNInz6obpgDQGcFmaJgB", "EXAVITQu4vr4xnSDxMaL"],
|
421 |
+
value="21m00Tcm4TlvDq8ikWAM",
|
422 |
+
label="ElevenLabs Voice ID",
|
423 |
+
info="Choose voice for text-to-speech"
|
424 |
+
),
|
425 |
+
gr.Slider(minimum=1, maximum=10, value=5.0, label="Guidance Scale", info="4-6 recommended"),
|
426 |
+
gr.Slider(minimum=1, maximum=10, value=3.0, label="Audio Scale", info="Higher values = better lip-sync"),
|
427 |
+
gr.Slider(minimum=10, maximum=100, value=30, step=1, label="Number of Steps", info="20-50 recommended")
|
428 |
+
],
|
429 |
+
outputs=gr.Video(label="Generated Avatar Video"),
|
430 |
+
title="🎭 OmniAvatar-14B with ElevenLabs TTS",
|
431 |
+
description="""
|
432 |
+
Generate avatar videos with lip-sync from text prompts and speech.
|
433 |
+
|
434 |
+
**Features:**
|
435 |
+
- ✅ **Text-to-Speech**: Enter text to generate speech automatically
|
436 |
+
- ✅ **ElevenLabs Integration**: High-quality voice synthesis
|
437 |
+
- ✅ **Audio URL Support**: Use pre-generated audio files
|
438 |
+
- ✅ **Image URL Support**: Reference images for character appearance
|
439 |
+
- ✅ **Customizable Parameters**: Fine-tune generation quality
|
440 |
+
|
441 |
+
**Usage:**
|
442 |
+
1. Enter a character description in the prompt
|
443 |
+
2. **Either** enter text for speech generation **OR** provide an audio URL
|
444 |
+
3. Optionally add a reference image URL
|
445 |
+
4. Choose voice and adjust parameters
|
446 |
+
5. Generate your avatar video!
|
447 |
+
|
448 |
+
**Tips:**
|
449 |
+
- Use guidance scale 4-6 for best prompt following
|
450 |
+
- Increase audio scale for better lip-sync
|
451 |
+
- Clear, descriptive prompts work best
|
452 |
+
""",
|
453 |
+
examples=[
|
454 |
+
[
|
455 |
+
"A professional teacher explaining a mathematical concept with clear gestures",
|
456 |
+
"Hello students! Today we're going to learn about calculus and how derivatives work in real life.",
|
457 |
+
"",
|
458 |
+
"https://example.com/teacher.jpg",
|
459 |
+
"21m00Tcm4TlvDq8ikWAM",
|
460 |
+
5.0,
|
461 |
+
3.5,
|
462 |
+
30
|
463 |
+
],
|
464 |
+
[
|
465 |
+
"A friendly presenter speaking confidently to an audience",
|
466 |
+
"Welcome everyone to our presentation on artificial intelligence and its applications!",
|
467 |
+
"",
|
468 |
+
"",
|
469 |
+
"pNInz6obpgDQGcFmaJgB",
|
470 |
+
5.5,
|
471 |
+
4.0,
|
472 |
+
35
|
473 |
+
]
|
474 |
+
]
|
475 |
+
)
|
476 |
+
|
477 |
+
# Mount Gradio app
|
478 |
+
app = gr.mount_gradio_app(app, iface, path="/gradio")
|
479 |
+
|
480 |
+
if __name__ == "__main__":
|
481 |
+
import uvicorn
|
482 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
configs/inference.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# OmniAvatar-14B Inference Configuration
|
2 |
+
|
3 |
+
model:
|
4 |
+
base_model_path: "./pretrained_models/Wan2.1-T2V-14B"
|
5 |
+
lora_path: "./pretrained_models/OmniAvatar-14B"
|
6 |
+
audio_encoder_path: "./pretrained_models/wav2vec2-base-960h"
|
7 |
+
|
8 |
+
inference:
|
9 |
+
guidance_scale: 5.0
|
10 |
+
audio_scale: 3.0
|
11 |
+
num_inference_steps: 30
|
12 |
+
height: 480
|
13 |
+
width: 480
|
14 |
+
fps: 24
|
15 |
+
duration: 5.0
|
16 |
+
|
17 |
+
hardware:
|
18 |
+
device: "cuda"
|
19 |
+
mixed_precision: "fp16"
|
20 |
+
enable_xformers: true
|
21 |
+
enable_flash_attention: true
|
22 |
+
|
23 |
+
output:
|
24 |
+
output_dir: "./outputs"
|
25 |
+
format: "mp4"
|
26 |
+
codec: "h264"
|
27 |
+
bitrate: "5M"
|
28 |
+
|
29 |
+
tea_cache:
|
30 |
+
enabled: false
|
31 |
+
l1_thresh: 0.14
|
32 |
+
|
33 |
+
multi_gpu:
|
34 |
+
enabled: false
|
35 |
+
sp_size: 1
|
download_models.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
echo "Downloading OmniAvatar-14B models..."
|
4 |
+
|
5 |
+
# Create directories
|
6 |
+
mkdir -p pretrained_models
|
7 |
+
|
8 |
+
# Install huggingface-hub if not already installed
|
9 |
+
pip install "huggingface_hub[cli]"
|
10 |
+
|
11 |
+
# Download models
|
12 |
+
echo "Downloading Wan2.1-T2V-14B..."
|
13 |
+
huggingface-cli download Wan-AI/Wan2.1-T2V-14B --local-dir ./pretrained_models/Wan2.1-T2V-14B
|
14 |
+
|
15 |
+
echo "Downloading wav2vec2-base-960h..."
|
16 |
+
huggingface-cli download facebook/wav2vec2-base-960h --local-dir ./pretrained_models/wav2vec2-base-960h
|
17 |
+
|
18 |
+
echo "Downloading OmniAvatar-14B..."
|
19 |
+
huggingface-cli download OmniAvatar/OmniAvatar-14B --local-dir ./pretrained_models/OmniAvatar-14B
|
20 |
+
|
21 |
+
echo "Model download completed!"
|
elevenlabs_integration.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
ElevenLabs + OmniAvatar Integration Example
|
4 |
+
"""
|
5 |
+
|
6 |
+
import requests
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
class ElevenLabsOmniAvatarClient:
|
12 |
+
def __init__(self, elevenlabs_api_key: str, omni_avatar_base_url: str = "http://localhost:7860"):
|
13 |
+
self.elevenlabs_api_key = elevenlabs_api_key
|
14 |
+
self.omni_avatar_base_url = omni_avatar_base_url
|
15 |
+
self.elevenlabs_base_url = "https://api.elevenlabs.io/v1"
|
16 |
+
|
17 |
+
def text_to_speech_url(self, text: str, voice_id: str, model_id: str = "eleven_monolingual_v1") -> str:
|
18 |
+
"""
|
19 |
+
Generate speech from text using ElevenLabs and return the audio URL
|
20 |
+
|
21 |
+
Args:
|
22 |
+
text: Text to convert to speech
|
23 |
+
voice_id: ElevenLabs voice ID
|
24 |
+
model_id: ElevenLabs model ID
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
URL to the generated audio file
|
28 |
+
"""
|
29 |
+
url = f"{self.elevenlabs_base_url}/text-to-speech/{voice_id}"
|
30 |
+
|
31 |
+
headers = {
|
32 |
+
"Accept": "audio/mpeg",
|
33 |
+
"Content-Type": "application/json",
|
34 |
+
"xi-api-key": self.elevenlabs_api_key
|
35 |
+
}
|
36 |
+
|
37 |
+
data = {
|
38 |
+
"text": text,
|
39 |
+
"model_id": model_id,
|
40 |
+
"voice_settings": {
|
41 |
+
"stability": 0.5,
|
42 |
+
"similarity_boost": 0.5
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
# Generate audio
|
47 |
+
response = requests.post(url, json=data, headers=headers)
|
48 |
+
|
49 |
+
if response.status_code != 200:
|
50 |
+
raise Exception(f"ElevenLabs API error: {response.status_code} - {response.text}")
|
51 |
+
|
52 |
+
# Save audio to temporary file and return a URL
|
53 |
+
# In practice, you might upload this to a CDN or file server
|
54 |
+
# For this example, we'll assume you have a way to serve the file
|
55 |
+
|
56 |
+
# This is a placeholder - in real implementation, you would:
|
57 |
+
# 1. Save the audio file
|
58 |
+
# 2. Upload to a file server or CDN
|
59 |
+
# 3. Return the public URL
|
60 |
+
|
61 |
+
return f"{self.elevenlabs_base_url}/text-to-speech/{voice_id}?text={text}&model_id={model_id}"
|
62 |
+
|
63 |
+
def generate_avatar(self,
|
64 |
+
prompt: str,
|
65 |
+
speech_text: str,
|
66 |
+
voice_id: str,
|
67 |
+
image_url: Optional[str] = None,
|
68 |
+
guidance_scale: float = 5.0,
|
69 |
+
audio_scale: float = 3.5,
|
70 |
+
num_steps: int = 30) -> dict:
|
71 |
+
"""
|
72 |
+
Generate avatar video using ElevenLabs audio and OmniAvatar
|
73 |
+
|
74 |
+
Args:
|
75 |
+
prompt: Description of character behavior
|
76 |
+
speech_text: Text to be spoken (sent to ElevenLabs)
|
77 |
+
voice_id: ElevenLabs voice ID
|
78 |
+
image_url: Optional reference image URL
|
79 |
+
guidance_scale: Prompt guidance scale
|
80 |
+
audio_scale: Audio guidance scale
|
81 |
+
num_steps: Number of inference steps
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
Generation result with video path and metadata
|
85 |
+
"""
|
86 |
+
|
87 |
+
try:
|
88 |
+
# Step 1: Generate audio URL from ElevenLabs
|
89 |
+
print(f"🎤 Generating speech with ElevenLabs...")
|
90 |
+
print(f"Text: {speech_text}")
|
91 |
+
print(f"Voice ID: {voice_id}")
|
92 |
+
|
93 |
+
# Get audio URL from ElevenLabs
|
94 |
+
elevenlabs_audio_url = self.text_to_speech_url(speech_text, voice_id)
|
95 |
+
|
96 |
+
# Step 2: Generate avatar with OmniAvatar
|
97 |
+
print(f"🎭 Generating avatar with OmniAvatar...")
|
98 |
+
print(f"Prompt: {prompt}")
|
99 |
+
|
100 |
+
avatar_data = {
|
101 |
+
"prompt": prompt,
|
102 |
+
"elevenlabs_audio_url": elevenlabs_audio_url,
|
103 |
+
"guidance_scale": guidance_scale,
|
104 |
+
"audio_scale": audio_scale,
|
105 |
+
"num_steps": num_steps
|
106 |
+
}
|
107 |
+
|
108 |
+
if image_url:
|
109 |
+
avatar_data["image_url"] = image_url
|
110 |
+
print(f"Image URL: {image_url}")
|
111 |
+
|
112 |
+
response = requests.post(f"{self.omni_avatar_base_url}/generate", json=avatar_data)
|
113 |
+
|
114 |
+
if response.status_code != 200:
|
115 |
+
raise Exception(f"OmniAvatar API error: {response.status_code} - {response.text}")
|
116 |
+
|
117 |
+
result = response.json()
|
118 |
+
|
119 |
+
print(f"✅ Avatar generated successfully!")
|
120 |
+
print(f"Output: {result['output_path']}")
|
121 |
+
print(f"Processing time: {result['processing_time']:.2f}s")
|
122 |
+
|
123 |
+
return result
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
print(f"❌ Error generating avatar: {e}")
|
127 |
+
raise
|
128 |
+
|
129 |
+
def main():
|
130 |
+
"""Example usage"""
|
131 |
+
|
132 |
+
# Configuration
|
133 |
+
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY", "your-elevenlabs-api-key")
|
134 |
+
OMNI_AVATAR_URL = os.getenv("OMNI_AVATAR_URL", "http://localhost:7860")
|
135 |
+
|
136 |
+
if ELEVENLABS_API_KEY == "your-elevenlabs-api-key":
|
137 |
+
print("⚠�� Please set your ELEVENLABS_API_KEY environment variable")
|
138 |
+
print("Example: export ELEVENLABS_API_KEY='your-actual-api-key'")
|
139 |
+
return
|
140 |
+
|
141 |
+
# Initialize client
|
142 |
+
client = ElevenLabsOmniAvatarClient(ELEVENLABS_API_KEY, OMNI_AVATAR_URL)
|
143 |
+
|
144 |
+
# Example 1: Basic avatar generation
|
145 |
+
print("=== Example 1: Basic Avatar Generation ===")
|
146 |
+
try:
|
147 |
+
result = client.generate_avatar(
|
148 |
+
prompt="A friendly teacher explaining a concept with clear hand gestures",
|
149 |
+
speech_text="Hello! Today we're going to learn about artificial intelligence and how it works.",
|
150 |
+
voice_id="21m00Tcm4TlvDq8ikWAM", # Replace with your voice ID
|
151 |
+
guidance_scale=5.0,
|
152 |
+
audio_scale=4.0,
|
153 |
+
num_steps=30
|
154 |
+
)
|
155 |
+
print(f"Video saved to: {result['output_path']}")
|
156 |
+
except Exception as e:
|
157 |
+
print(f"Example 1 failed: {e}")
|
158 |
+
|
159 |
+
# Example 2: Avatar with reference image
|
160 |
+
print("\n=== Example 2: Avatar with Reference Image ===")
|
161 |
+
try:
|
162 |
+
result = client.generate_avatar(
|
163 |
+
prompt="A professional presenter speaking confidently to an audience",
|
164 |
+
speech_text="Welcome to our presentation on the future of technology.",
|
165 |
+
voice_id="21m00Tcm4TlvDq8ikWAM", # Replace with your voice ID
|
166 |
+
image_url="https://example.com/professional-headshot.jpg", # Replace with actual image
|
167 |
+
guidance_scale=5.5,
|
168 |
+
audio_scale=3.5,
|
169 |
+
num_steps=35
|
170 |
+
)
|
171 |
+
print(f"Video with reference image saved to: {result['output_path']}")
|
172 |
+
except Exception as e:
|
173 |
+
print(f"Example 2 failed: {e}")
|
174 |
+
|
175 |
+
print("\n🎉 Integration examples completed!")
|
176 |
+
print("\nTo use this script:")
|
177 |
+
print("1. Set your ElevenLabs API key: export ELEVENLABS_API_KEY='your-key'")
|
178 |
+
print("2. Start OmniAvatar API: python app.py")
|
179 |
+
print("3. Run this script: python elevenlabs_integration.py")
|
180 |
+
|
181 |
+
if __name__ == "__main__":
|
182 |
+
main()
|
examples/infer_samples.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
A young person speaking confidently@@@@./examples/sample_audio.wav
|
2 |
+
A teacher explaining a concept@@./examples/teacher.jpg@@./examples/lesson_audio.wav
|
3 |
+
An animated character telling a story@@@@./examples/story_audio.wav
|
requirements.txt
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core web framework dependencies
|
2 |
+
fastapi==0.104.1
|
3 |
+
uvicorn[standard]==0.24.0
|
4 |
+
gradio==4.7.1
|
5 |
+
|
6 |
+
# PyTorch ecosystem (pre-installed in base image)
|
7 |
+
torch>=2.0.0
|
8 |
+
torchvision>=0.15.0
|
9 |
+
torchaudio>=2.0.0
|
10 |
+
|
11 |
+
# ML/AI libraries
|
12 |
+
transformers>=4.21.0
|
13 |
+
diffusers>=0.21.0
|
14 |
+
accelerate>=0.21.0
|
15 |
+
xformers>=0.0.20
|
16 |
+
|
17 |
+
# Media processing
|
18 |
+
opencv-python-headless>=4.8.0
|
19 |
+
librosa>=0.10.0
|
20 |
+
soundfile>=0.12.0
|
21 |
+
pillow>=9.5.0
|
22 |
+
|
23 |
+
# Scientific computing
|
24 |
+
numpy>=1.21.0
|
25 |
+
scipy>=1.9.0
|
26 |
+
einops>=0.6.0
|
27 |
+
|
28 |
+
# Configuration and training
|
29 |
+
omegaconf>=2.3.0
|
30 |
+
pytorch-lightning>=2.0.0
|
31 |
+
torchmetrics>=1.0.0
|
32 |
+
|
33 |
+
# API and networking
|
34 |
+
pydantic>=2.4.0
|
35 |
+
aiohttp>=3.8.0
|
36 |
+
aiofiles
|
37 |
+
python-dotenv>=1.0.0
|
38 |
+
|
39 |
+
# Attention optimization (optional, may fail on some systems)
|
40 |
+
# flash-attn>=2.3.0
|
41 |
+
|
42 |
+
# Additional dependencies for HF Spaces
|
43 |
+
huggingface-hub>=0.17.0
|
44 |
+
safetensors>=0.4.0
|
scripts/inference.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import yaml
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
+
import logging
|
8 |
+
|
9 |
+
logging.basicConfig(level=logging.INFO)
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
def parse_args():
|
13 |
+
parser = argparse.ArgumentParser(description="OmniAvatar-14B Inference")
|
14 |
+
parser.add_argument("--config", type=str, required=True, help="Path to config file")
|
15 |
+
parser.add_argument("--input_file", type=str, required=True, help="Path to input samples file")
|
16 |
+
parser.add_argument("--guidance_scale", type=float, default=5.0, help="Guidance scale")
|
17 |
+
parser.add_argument("--audio_scale", type=float, default=3.0, help="Audio guidance scale")
|
18 |
+
parser.add_argument("--num_steps", type=int, default=30, help="Number of inference steps")
|
19 |
+
parser.add_argument("--sp_size", type=int, default=1, help="Multi-GPU size")
|
20 |
+
parser.add_argument("--tea_cache_l1_thresh", type=float, default=None, help="TeaCache threshold")
|
21 |
+
return parser.parse_args()
|
22 |
+
|
23 |
+
def load_config(config_path):
|
24 |
+
with open(config_path, 'r') as f:
|
25 |
+
return yaml.safe_load(f)
|
26 |
+
|
27 |
+
def process_input_file(input_file):
|
28 |
+
"""Parse input file with format: prompt@@image_path@@audio_path"""
|
29 |
+
samples = []
|
30 |
+
with open(input_file, 'r') as f:
|
31 |
+
for line in f:
|
32 |
+
line = line.strip()
|
33 |
+
if line:
|
34 |
+
parts = line.split('@@')
|
35 |
+
if len(parts) >= 3:
|
36 |
+
prompt = parts[0]
|
37 |
+
image_path = parts[1] if parts[1] else None
|
38 |
+
audio_path = parts[2]
|
39 |
+
samples.append({
|
40 |
+
'prompt': prompt,
|
41 |
+
'image_path': image_path,
|
42 |
+
'audio_path': audio_path
|
43 |
+
})
|
44 |
+
return samples
|
45 |
+
|
46 |
+
def main():
|
47 |
+
args = parse_args()
|
48 |
+
|
49 |
+
# Load configuration
|
50 |
+
config = load_config(args.config)
|
51 |
+
|
52 |
+
# Process input samples
|
53 |
+
samples = process_input_file(args.input_file)
|
54 |
+
|
55 |
+
logger.info(f"Processing {len(samples)} samples")
|
56 |
+
|
57 |
+
# Create output directory
|
58 |
+
output_dir = Path(config['output']['output_dir'])
|
59 |
+
output_dir.mkdir(exist_ok=True)
|
60 |
+
|
61 |
+
# This is a placeholder - actual inference would require the OmniAvatar model implementation
|
62 |
+
logger.info("Note: This is a placeholder inference script.")
|
63 |
+
logger.info("Actual implementation would require:")
|
64 |
+
logger.info("1. Loading the OmniAvatar model")
|
65 |
+
logger.info("2. Processing audio with wav2vec2")
|
66 |
+
logger.info("3. Running video generation pipeline")
|
67 |
+
logger.info("4. Saving output videos")
|
68 |
+
|
69 |
+
for i, sample in enumerate(samples):
|
70 |
+
logger.info(f"Sample {i+1}: {sample['prompt']}")
|
71 |
+
logger.info(f" Audio: {sample['audio_path']}")
|
72 |
+
logger.info(f" Image: {sample['image_path']}")
|
73 |
+
|
74 |
+
logger.info("Inference completed successfully!")
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
main()
|