Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
|
|
3 |
|
4 |
# Define model names
|
5 |
models = {
|
|
|
6 |
"ModernBERT Large (gender v3)": "breadlicker45/modernbert-gender-v3-test",
|
7 |
"ModernBERT Large (gender v2)": "breadlicker45/modernbert-gender-v2",
|
8 |
"ModernBERT Base (gender)": "breadlicker45/ModernBERT-base-gender",
|
@@ -10,8 +12,6 @@ models = {
|
|
10 |
}
|
11 |
|
12 |
# Define the mapping for user-friendly labels
|
13 |
-
# Note: Transformers pipelines often output 'LABEL_0', 'LABEL_1'.
|
14 |
-
# We handle potential variations like just '0', '1'.
|
15 |
label_map = {
|
16 |
"LABEL_0": "Male (0)",
|
17 |
"0": "Male (0)",
|
@@ -19,27 +19,74 @@ label_map = {
|
|
19 |
"1": "Female (1)"
|
20 |
}
|
21 |
|
22 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def classify_text(model_name, text):
|
24 |
try:
|
25 |
-
classifier = pipeline("text-classification", model=models[model_name], top_k=None)
|
26 |
-
predictions = classifier(text)
|
27 |
-
|
28 |
-
# Process predictions to use friendly labels
|
29 |
processed_results = {}
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
return processed_results
|
|
|
39 |
except Exception as e:
|
40 |
-
# Handle potential errors during model loading or inference
|
41 |
print(f"Error: {e}")
|
42 |
-
# Return an error message suitable for gr.Label
|
43 |
return {"Error": f"Failed to process: {e}"}
|
44 |
|
45 |
|
@@ -50,20 +97,22 @@ interface = gr.Interface(
|
|
50 |
gr.Dropdown(
|
51 |
list(models.keys()),
|
52 |
label="Select Model",
|
53 |
-
value="
|
54 |
),
|
55 |
gr.Textbox(
|
56 |
lines=2,
|
57 |
-
placeholder="Enter text to classify for perceived gender...",
|
58 |
-
value="This is an example sentence."
|
59 |
)
|
60 |
],
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
)
|
66 |
|
67 |
# Launch the app
|
68 |
if __name__ == "__main__":
|
69 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
|
5 |
# Define model names
|
6 |
models = {
|
7 |
+
"gte base (gender v3.1)": "breadlicker45/gte-gender-v3.1-test",
|
8 |
"ModernBERT Large (gender v3)": "breadlicker45/modernbert-gender-v3-test",
|
9 |
"ModernBERT Large (gender v2)": "breadlicker45/modernbert-gender-v2",
|
10 |
"ModernBERT Base (gender)": "breadlicker45/ModernBERT-base-gender",
|
|
|
12 |
}
|
13 |
|
14 |
# Define the mapping for user-friendly labels
|
|
|
|
|
15 |
label_map = {
|
16 |
"LABEL_0": "Male (0)",
|
17 |
"0": "Male (0)",
|
|
|
19 |
"1": "Female (1)"
|
20 |
}
|
21 |
|
22 |
+
# A cache to store loaded models/pipelines to speed up subsequent requests
|
23 |
+
model_cache = {}
|
24 |
+
|
25 |
+
# Determine the device to run on (GPU if available, otherwise CPU)
|
26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
print(f"Using device: {device}")
|
28 |
+
|
29 |
+
|
30 |
+
# The main classification function, now handles both model types
|
31 |
def classify_text(model_name, text):
|
32 |
try:
|
|
|
|
|
|
|
|
|
33 |
processed_results = {}
|
34 |
+
model_id = models[model_name]
|
35 |
+
|
36 |
+
# --- SPECIAL HANDLING FOR THE GTE MODEL ---
|
37 |
+
if "gte-gender" in model_id:
|
38 |
+
# Check if model/tokenizer is already in our cache
|
39 |
+
if model_id not in model_cache:
|
40 |
+
print(f"Loading GTE model and tokenizer manually: {model_id}...")
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
42 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id, trust_remote_code=True).to(device)
|
43 |
+
model_cache[model_id] = (model, tokenizer) # Cache both
|
44 |
+
|
45 |
+
model, tokenizer = model_cache[model_id]
|
46 |
+
|
47 |
+
# Tokenize the input text and move to the correct device
|
48 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
49 |
+
|
50 |
+
# Get model predictions
|
51 |
+
with torch.no_grad():
|
52 |
+
logits = model(**inputs).logits
|
53 |
+
|
54 |
+
# Convert logits to probabilities using softmax
|
55 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)[0]
|
56 |
+
|
57 |
+
# Format results to match the pipeline's output style
|
58 |
+
processed_results[label_map["LABEL_0"]] = probabilities[0].item()
|
59 |
+
processed_results[label_map["LABEL_1"]] = probabilities[1].item()
|
60 |
+
|
61 |
+
# --- STANDARD HANDLING FOR PIPELINE-COMPATIBLE MODELS ---
|
62 |
+
else:
|
63 |
+
# Check if the pipeline is already in our cache
|
64 |
+
if model_id not in model_cache:
|
65 |
+
print(f"Loading pipeline for model: {model_id}...")
|
66 |
+
# Load and cache the pipeline
|
67 |
+
model_cache[model_id] = pipeline(
|
68 |
+
"text-classification",
|
69 |
+
model=model_id,
|
70 |
+
top_k=None,
|
71 |
+
device=device # Use the determined device
|
72 |
+
)
|
73 |
+
|
74 |
+
classifier = model_cache[model_id]
|
75 |
+
predictions = classifier(text)
|
76 |
+
|
77 |
+
# Process predictions to use friendly labels
|
78 |
+
if predictions and isinstance(predictions, list) and predictions[0]:
|
79 |
+
for pred in predictions[0]:
|
80 |
+
raw_label = pred["label"]
|
81 |
+
score = pred["score"]
|
82 |
+
friendly_label = label_map.get(raw_label, raw_label)
|
83 |
+
processed_results[friendly_label] = score
|
84 |
+
|
85 |
return processed_results
|
86 |
+
|
87 |
except Exception as e:
|
|
|
88 |
print(f"Error: {e}")
|
89 |
+
# Return an error message suitable for gr.Label or gr.JSON
|
90 |
return {"Error": f"Failed to process: {e}"}
|
91 |
|
92 |
|
|
|
97 |
gr.Dropdown(
|
98 |
list(models.keys()),
|
99 |
label="Select Model",
|
100 |
+
value="gte base (gender v3.1)" # Default model
|
101 |
),
|
102 |
gr.Textbox(
|
103 |
lines=2,
|
104 |
+
placeholder="Enter text to classify for perceived gender...",
|
105 |
+
value="This is an example sentence."
|
106 |
)
|
107 |
],
|
108 |
+
# Since we now consistently return a dictionary of {label: score},
|
109 |
+
# we can go back to using the nicer-looking gr.Label component!
|
110 |
+
outputs=gr.Label(num_top_classes=2, label="Classification Results"),
|
111 |
+
title="ModernBERT & GTE Gender Classifier",
|
112 |
+
description="Select a model and enter a sentence to see the perceived gender classification (Male=0, Female=1) and confidence scores. Note: Text-based gender classification can be unreliable and reflect societal biases.",
|
113 |
+
allow_flagging="never",
|
114 |
)
|
115 |
|
116 |
# Launch the app
|
117 |
if __name__ == "__main__":
|
118 |
+
interface.launch()
|