import sys sys.path.append('./') import gradio as gr import spaces import os import sys import subprocess import numpy as np from PIL import Image import cv2 import torch import random os.system("pip install -e ./controlnet_aux") from controlnet_aux import OpenposeDetector #, CannyDetector from depth_anything_v2.dpt import DepthAnythingV2 from huggingface_hub import hf_hub_download from huggingface_hub import login hf_token = os.environ.get("HF_TOKEN") login(token=hf_token) MAX_SEED = np.iinfo(np.int32).max try: local_dir = os.path.dirname(__file__) except: local_dir = '.' hf_hub_download(repo_id="briaai/BRIA-3.1", filename='pipeline_bria.py', local_dir=local_dir) hf_hub_download(repo_id="briaai/BRIA-3.1", filename='transformer_bria.py', local_dir=local_dir) hf_hub_download(repo_id="briaai/BRIA-3.1", filename='bria_utils.py', local_dir=local_dir) hf_hub_download(repo_id="briaai/BRIA-3.1-ControlNet-Union", filename='pipeline_bria_controlnet.py', local_dir=local_dir) hf_hub_download(repo_id="briaai/BRIA-3.1-ControlNet-Union", filename='controlnet_bria.py', local_dir=local_dir) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} } RATIO_CONFIGS_1024 = { 0.6666666666666666: {"width": 832, "height": 1248}, 0.7432432432432432: {"width": 880, "height": 1184}, 0.8028169014084507: {"width": 912, "height": 1136}, 1.0: {"width": 1024, "height": 1024}, 1.2456140350877194: {"width": 1136, "height": 912}, 1.3454545454545455: {"width": 1184, "height": 880}, 1.4339622641509433: {"width": 1216, "height": 848}, 1.5: {"width": 1248, "height": 832}, 1.5490196078431373: {"width": 1264, "height": 816}, 1.62: {"width": 1296, "height": 800}, 1.7708333333333333: {"width": 1360, "height": 768}, } encoder = 'vitl' model = DepthAnythingV2(**model_configs[encoder]) filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model") state_dict = torch.load(filepath, map_location="cpu") model.load_state_dict(state_dict) model = model.to(DEVICE).eval() import torch from diffusers.utils import load_image from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel from pipeline_bria_controlnet import BriaControlNetPipeline import PIL.Image as Image base_model = 'briaai/BRIA-3.1' controlnet_model = 'briaai/BRIA-3.1-ControlNet-Union' controlnet = BriaControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) pipe = BriaControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16, trust_remote_code=True) pipe = pipe.to(device="cuda", dtype=torch.bfloat16) mode_mapping = { "depth": 0, "canny": 1, "colorgrid": 2, "recolor": 3, "tile": 4, "pose": 5, } strength_mapping = { "depth": 1.0, "canny": 1.0, "colorgrid": 1.0, "recolor": 1.0, "tile": 1.0, "pose": 1.0, } open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators") torch.backends.cuda.matmul.allow_tf32 = True pipe.enable_model_cpu_offload() # for saving memory def convert_from_image_to_cv2(img: Image) -> np.ndarray: return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) def convert_from_cv2_to_image(img: np.ndarray) -> Image: return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) def extract_depth(image): image = np.asarray(image) depth = model.infer_image(image[:, :, ::-1]) depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 depth = depth.astype(np.uint8) gray_depth = Image.fromarray(depth).convert('RGB') return gray_depth def extract_openpose(img): processed_image_open_pose = open_pose(img, hand_and_face=True) processed_image_open_pose = processed_image_open_pose.resize(img.size) return processed_image_open_pose def extract_canny(input_image): image = np.array(input_image) image = cv2.Canny(image, 100, 200) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) return canny_image def convert_to_grayscale(image): gray_image = image.convert('L').convert('RGB') return gray_image def tile(downscale_factor, input_image): control_image = input_image.resize((input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)).resize(input_image.size, Image.NEAREST) return control_image def resize_img(control_image): image_ratio = control_image.width / control_image.height ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio)) to_height = RATIO_CONFIGS_1024[ratio]["height"] to_width = RATIO_CONFIGS_1024[ratio]["width"] resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS) return resized_image @spaces.GPU(duration=180) def infer(image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)): control_mode_num = mode_mapping[control_mode] if image_in is not None: image_in = resize_img(load_image(image_in)) if control_mode == "canny": control_image = extract_canny(image_in) elif control_mode == "depth": control_image = extract_depth(image_in) elif control_mode == "pose": control_image = extract_openpose(image_in) elif control_mode == "colorgrid": control_image = tile(64, image_in) elif control_mode == "recolor": control_image = convert_to_grayscale(image_in) elif control_mode == "tile": control_image = tile(16, image_in) control_image = resize_img(control_image) width, height = control_image.size image = pipe( prompt, control_image=control_image, control_mode=control_mode_num, width=width, height=height, controlnet_conditioning_scale=control_strength, num_inference_steps=inference_steps, guidance_scale=guidance_scale, generator=torch.manual_seed(seed), max_sequence_length=128, negative_prompt="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate" ).images[0] torch.cuda.empty_cache() return image, control_image, gr.update(visible=True) css=""" #col-container{ margin: 0 auto; max-width: 1080px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" # BRIA-3.1-ControlNet-Union A unified ControlNet for BRIA-3.1 model from Bria.ai.
""") with gr.Column(): with gr.Row(): with gr.Column(): # with gr.Row(equal_height=True): # cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath") image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath") prompt = gr.Textbox(label="Prompt", value="best quality") with gr.Accordion("Controlnet"): control_mode = gr.Radio( ["depth", "canny", "colorgrid", "recolor", "tile", "pose"], label="Mode", value="canny", info="select the control mode, one for all" ) control_strength = gr.Slider( label="control strength", minimum=0, maximum=1.0, step=0.05, value=0.9, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=555, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Accordion("Advanced settings", open=False): with gr.Column(): with gr.Row(): inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=50) guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=5.0) submit_btn = gr.Button("Submit") with gr.Column(): result = gr.Image(label="Result") processed_cond = gr.Image(label="Preprocessed Cond") submit_btn.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False ).then( fn = infer, inputs = [image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed], outputs = [result, processed_cond], show_api=False ) demo.queue(api_open=False) demo.launch()