Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -38,26 +38,19 @@ model_configs = {
|
|
38 |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
39 |
}
|
40 |
|
41 |
-
|
42 |
-
0.
|
43 |
-
0.
|
44 |
-
0.
|
45 |
-
0
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
1.
|
51 |
-
1.
|
52 |
-
1.
|
53 |
-
1.29:{"width":1152,"height":896},
|
54 |
-
1.38:{"width":1152,"height":832},
|
55 |
-
1.46:{"width":1216,"height":832},
|
56 |
-
1.67:{"width":1280,"height":768},
|
57 |
-
1.75:{"width":1344,"height":768},
|
58 |
-
2.00:{"width":1408,"height":704}
|
59 |
}
|
60 |
-
ratios = np.array(list(ratios_map.keys()))
|
61 |
|
62 |
encoder = 'vitl'
|
63 |
model = DepthAnythingV2(**model_configs[encoder])
|
@@ -154,19 +147,12 @@ def tile(downscale_factor, input_image):
|
|
154 |
control_image = input_image.resize((input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)).resize(input_image.size, Image.NEAREST)
|
155 |
return control_image
|
156 |
|
157 |
-
def
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
w,h = chosen_ratio['width'], chosen_ratio['height']
|
164 |
-
return w,h
|
165 |
-
|
166 |
-
def resize_img(image):
|
167 |
-
image = image.convert('RGB')
|
168 |
-
w,h = get_size(image)
|
169 |
-
resized_image = image.resize((w, h))
|
170 |
return resized_image
|
171 |
|
172 |
@spaces.GPU(duration=180)
|
|
|
38 |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
39 |
}
|
40 |
|
41 |
+
RATIO_CONFIGS_1024 = {
|
42 |
+
0.6666666666666666: {"width": 832, "height": 1248},
|
43 |
+
0.7432432432432432: {"width": 880, "height": 1184},
|
44 |
+
0.8028169014084507: {"width": 912, "height": 1136},
|
45 |
+
1.0: {"width": 1024, "height": 1024},
|
46 |
+
1.2456140350877194: {"width": 1136, "height": 912},
|
47 |
+
1.3454545454545455: {"width": 1184, "height": 880},
|
48 |
+
1.4339622641509433: {"width": 1216, "height": 848},
|
49 |
+
1.5: {"width": 1248, "height": 832},
|
50 |
+
1.5490196078431373: {"width": 1264, "height": 816},
|
51 |
+
1.62: {"width": 1296, "height": 800},
|
52 |
+
1.7708333333333333: {"width": 1360, "height": 768},
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
}
|
|
|
54 |
|
55 |
encoder = 'vitl'
|
56 |
model = DepthAnythingV2(**model_configs[encoder])
|
|
|
147 |
control_image = input_image.resize((input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)).resize(input_image.size, Image.NEAREST)
|
148 |
return control_image
|
149 |
|
150 |
+
def resize_img(control_image):
|
151 |
+
image_ratio = control_image.width / control_image.height
|
152 |
+
ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio))
|
153 |
+
to_height = RATIO_CONFIGS_1024[ratio]["height"]
|
154 |
+
to_width = RATIO_CONFIGS_1024[ratio]["width"]
|
155 |
+
resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
return resized_image
|
157 |
|
158 |
@spaces.GPU(duration=180)
|