Spaces:
Running
Running
| import gradio as gr | |
| import numpy as np | |
| import os | |
| from PIL import Image | |
| import requests | |
| from io import BytesIO | |
| import io | |
| import base64 | |
| hf_token = os.environ.get("HF_TOKEN") | |
| auth_headers = {"api_token": hf_token} | |
| def convert_mask_image_to_base64_string(mask_image): | |
| buffer = io.BytesIO() | |
| mask_image.save(buffer, format="PNG") # You can choose the format (e.g., "JPEG", "PNG") | |
| # Encode the buffer in base64 | |
| image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8') | |
| return f",{image_base64_string}" # for some reason the funciton which downloads image from base64 expects prefix of "," which is redundant in the url | |
| def download_image(url): | |
| response = requests.get(url) | |
| return Image.open(BytesIO(response.content)).convert("RGB") | |
| def eraser_api_call(image_base64_file, mask_base64_file, mask_type): | |
| url = "http://engine.prod.bria-api.com/v1/eraser" | |
| payload = { | |
| "file": image_base64_file, | |
| "mask_file": mask_base64_file, | |
| "mask_type": mask_type, | |
| } | |
| response = requests.post(url, json=payload, headers=auth_headers) | |
| response = response.json() | |
| res_image = download_image(response["result_url"]) | |
| return res_image | |
| ratios_map = { | |
| 0.5:{"width":704,"height":1408}, | |
| 0.57:{"width":768,"height":1344}, | |
| 0.68:{"width":832,"height":1216}, | |
| 0.72:{"width":832,"height":1152}, | |
| 0.78:{"width":896,"height":1152}, | |
| 0.82:{"width":896,"height":1088}, | |
| 0.88:{"width":960,"height":1088}, | |
| 0.94:{"width":960,"height":1024}, | |
| 1.00:{"width":1024,"height":1024}, | |
| 1.13:{"width":1088,"height":960}, | |
| 1.21:{"width":1088,"height":896}, | |
| 1.29:{"width":1152,"height":896}, | |
| 1.38:{"width":1152,"height":832}, | |
| 1.46:{"width":1216,"height":832}, | |
| 1.67:{"width":1280,"height":768}, | |
| 1.75:{"width":1344,"height":768}, | |
| 2.00:{"width":1408,"height":704} | |
| } | |
| ratios = np.array(list(ratios_map.keys())) | |
| def get_masked_image(image, image_mask, width, height): | |
| image_mask = image_mask # inpaint area is white | |
| image_mask = image_mask.resize((width, height)) # object to remove is white (1) | |
| image_mask_pil = image_mask | |
| image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 | |
| image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0 | |
| assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" | |
| masked_image_to_present = image.copy() | |
| masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel | |
| image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey | |
| image = Image.fromarray((image * 255.0).astype(np.uint8)) | |
| masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8)) | |
| return image, image_mask_pil, masked_image_to_present | |
| def get_size(init_image): | |
| w,h=init_image.size | |
| curr_ratio = w/h | |
| ind = np.argmin(np.abs(curr_ratio-ratios)) | |
| ratio = ratios[ind] | |
| chosen_ratio = ratios_map[ratio] | |
| w,h = chosen_ratio['width'], chosen_ratio['height'] | |
| return w,h | |
| def read_content(file_path: str) -> str: | |
| """read the content of target file | |
| """ | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| return content | |
| def predict(dict): | |
| init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024)) | |
| mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024)) | |
| image_base64_file = convert_mask_image_to_base64_string(init_image) | |
| mask_base64_file = convert_mask_image_to_base64_string(mask) | |
| mask_type = "manual" | |
| gen_img = eraser_api_call(image_base64_file, mask_base64_file, mask_type) | |
| return gen_img | |
| css = ''' | |
| .gradio-container{max-width: 1100px !important} | |
| #image_upload{min-height:400px} | |
| #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} | |
| #mask_radio .gr-form{background:transparent; border: none} | |
| #word_mask{margin-top: .75em !important} | |
| #word_mask textarea:disabled{opacity: 0.3} | |
| .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} | |
| .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} | |
| .dark .footer {border-color: #303030} | |
| .dark .footer>p {background: #0b0f19} | |
| .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} | |
| #image_upload .touch-none{display: flex} | |
| @keyframes spin { | |
| from { | |
| transform: rotate(0deg); | |
| } | |
| to { | |
| transform: rotate(360deg); | |
| } | |
| } | |
| #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;} | |
| div#share-btn-container > div {flex-direction: row;background: black;align-items: center} | |
| #share-btn-container:hover {background-color: #060606} | |
| #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;} | |
| #share-btn * {all: unset} | |
| #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;} | |
| #share-btn-container .wrap {display: none !important} | |
| #share-btn-container.hidden {display: none!important} | |
| #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} | |
| #run_button { | |
| width: 100%; | |
| height: auto; | |
| display: block; | |
| } | |
| #prompt-container{margin-top:-18px;} | |
| #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} | |
| #image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px} | |
| ''' | |
| image_blocks = gr.Blocks(css=css, elem_id="total-container") | |
| with image_blocks as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## BRIA Eraser") | |
| gr.HTML(''' | |
| <p style="margin-bottom: 10px; font-size: 94%"> | |
| This is a demo for BRIA Eraser which enables the ability to remove specific elements or objects. | |
| The model was trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement. | |
| </p> | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[], brush=gr.Brush(colors=["#000000"], color_mode="fixed")) | |
| with gr.Row(elem_id="prompt-container", equal_height=True): | |
| btn = gr.Button("Inpaint!", elem_id="run_button") | |
| with gr.Column(): | |
| image_out = gr.Image(label="Output", elem_id="output-img", height=400) | |
| # Button click will trigger the inpainting function (no prompt required) | |
| btn.click(fn=predict, inputs=[image], outputs=[image_out], api_name='run') | |
| gr.HTML( | |
| """ | |
| <div class="footer"> | |
| <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face | |
| </p> | |
| </div> | |
| """ | |
| ) | |
| image_blocks.queue(max_size=25,api_open=False).launch(show_api=False) |