Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| import diffusers | |
| import os | |
| from PIL import Image | |
| hf_token = os.environ.get("HF_TOKEN") | |
| from diffusers import AutoPipelineForText2Image | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = AutoPipelineForText2Image.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, force_zeros_for_empty_prompt=False).to(device) | |
| pipe.load_ip_adapter("briaai/DEV-Image-Prompt", subfolder='models', weight_name="ip_adapter_bria.bin") | |
| # default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def predict(prompt, ip_adapter_image, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, center_crop=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if not center_crop: | |
| ip_adapter_image.resize((224,224)) | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| pipe.to("cuda") | |
| image_encoder.to("cuda") | |
| pipe.image_encoder = image_encoder | |
| pipe.set_ip_adapter_scale([ip_adapter_scale]) | |
| image = pipe( | |
| prompt=prompt, | |
| ip_adapter_image=[ip_adapter_image], | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=1, | |
| generator=generator, | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| ["A dog", "minta.jpeg", 0.4], | |
| ["A capybara", "king-min.png", 0.5], | |
| ["A cat", "blue_hair.png", 0.5], | |
| ["", "meow.jpeg", 1.0], | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 720px; | |
| } | |
| #result img{ | |
| object-position: top; | |
| } | |
| #result .image-container{ | |
| height: 100% | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Kolors IP-Adapter - image reference and variations | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| with gr.Row(): | |
| with gr.Column(): | |
| ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil") | |
| ip_adapter_scale = gr.Slider( | |
| label="Image Input Scale", | |
| info="Use 1 for creating image variations", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.5, | |
| ) | |
| result = gr.Image(label="Result", elem_id="result") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| center_crop = gr.Checkbox(label="Center Crop image", value=False, info="If not checked, the IP-Adapter image input would be resized to a square.") | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=2048, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=2048, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=25, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=predict, | |
| inputs=[prompt, ip_adapter_image, ip_adapter_scale], | |
| outputs=[result, seed], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=predict, | |
| inputs=[prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs=[result, seed] | |
| ) | |
| demo.queue(max_size=25,api_open=False).launch(show_api=False) | |
| # image_blocks.queue(max_size=25,api_open=False).launch(show_api=False) |