File size: 8,784 Bytes
56fd459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Feature flags for gradual agent migration rollout

import os
from typing import Dict, Any, Optional
from dataclasses import dataclass
from enum import Enum

from ankigen_core.logging import logger


class AgentMode(Enum):
    """Agent system operation modes"""
    LEGACY = "legacy"  # Use original LLM interface
    AGENT_ONLY = "agent_only"  # Use agents for everything
    HYBRID = "hybrid"  # Mix agents and legacy based on flags
    A_B_TEST = "a_b_test"  # Random selection for A/B testing


@dataclass
class AgentFeatureFlags:
    """Feature flags for controlling agent system rollout"""
    
    # Main mode controls
    mode: AgentMode = AgentMode.LEGACY
    
    # Generation agents
    enable_subject_expert_agent: bool = False
    enable_pedagogical_agent: bool = False
    enable_content_structuring_agent: bool = False
    enable_generation_coordinator: bool = False
    
    # Judge agents
    enable_content_accuracy_judge: bool = False
    enable_pedagogical_judge: bool = False
    enable_clarity_judge: bool = False
    enable_technical_judge: bool = False
    enable_completeness_judge: bool = False
    enable_judge_coordinator: bool = False
    
    # Enhancement agents
    enable_revision_agent: bool = False
    enable_enhancement_agent: bool = False
    
    # Workflow features
    enable_multi_agent_generation: bool = False
    enable_parallel_judging: bool = False
    enable_agent_handoffs: bool = False
    enable_agent_tracing: bool = True
    
    # A/B testing
    ab_test_ratio: float = 0.5  # Percentage for A group
    ab_test_user_hash: Optional[str] = None
    
    # Performance
    agent_timeout: float = 30.0
    max_agent_retries: int = 3
    enable_agent_caching: bool = True
    
    # Quality thresholds
    min_judge_consensus: float = 0.6  # Minimum agreement between judges
    max_revision_iterations: int = 3
    
    @classmethod
    def from_env(cls) -> "AgentFeatureFlags":
        """Load feature flags from environment variables"""
        return cls(
            mode=AgentMode(os.getenv("ANKIGEN_AGENT_MODE", "legacy")),
            
            # Generation agents
            enable_subject_expert_agent=_env_bool("ANKIGEN_ENABLE_SUBJECT_EXPERT"),
            enable_pedagogical_agent=_env_bool("ANKIGEN_ENABLE_PEDAGOGICAL_AGENT"),
            enable_content_structuring_agent=_env_bool("ANKIGEN_ENABLE_CONTENT_STRUCTURING"),
            enable_generation_coordinator=_env_bool("ANKIGEN_ENABLE_GENERATION_COORDINATOR"),
            
            # Judge agents
            enable_content_accuracy_judge=_env_bool("ANKIGEN_ENABLE_CONTENT_JUDGE"),
            enable_pedagogical_judge=_env_bool("ANKIGEN_ENABLE_PEDAGOGICAL_JUDGE"),
            enable_clarity_judge=_env_bool("ANKIGEN_ENABLE_CLARITY_JUDGE"),
            enable_technical_judge=_env_bool("ANKIGEN_ENABLE_TECHNICAL_JUDGE"),
            enable_completeness_judge=_env_bool("ANKIGEN_ENABLE_COMPLETENESS_JUDGE"),
            enable_judge_coordinator=_env_bool("ANKIGEN_ENABLE_JUDGE_COORDINATOR"),
            
            # Enhancement agents
            enable_revision_agent=_env_bool("ANKIGEN_ENABLE_REVISION_AGENT"),
            enable_enhancement_agent=_env_bool("ANKIGEN_ENABLE_ENHANCEMENT_AGENT"),
            
            # Workflow features
            enable_multi_agent_generation=_env_bool("ANKIGEN_ENABLE_MULTI_AGENT_GEN"),
            enable_parallel_judging=_env_bool("ANKIGEN_ENABLE_PARALLEL_JUDGING"),
            enable_agent_handoffs=_env_bool("ANKIGEN_ENABLE_AGENT_HANDOFFS"),
            enable_agent_tracing=_env_bool("ANKIGEN_ENABLE_AGENT_TRACING", default=True),
            
            # A/B testing
            ab_test_ratio=float(os.getenv("ANKIGEN_AB_TEST_RATIO", "0.5")),
            ab_test_user_hash=os.getenv("ANKIGEN_AB_TEST_USER_HASH"),
            
            # Performance
            agent_timeout=float(os.getenv("ANKIGEN_AGENT_TIMEOUT", "30.0")),
            max_agent_retries=int(os.getenv("ANKIGEN_MAX_AGENT_RETRIES", "3")),
            enable_agent_caching=_env_bool("ANKIGEN_ENABLE_AGENT_CACHING", default=True),
            
            # Quality thresholds
            min_judge_consensus=float(os.getenv("ANKIGEN_MIN_JUDGE_CONSENSUS", "0.6")),
            max_revision_iterations=int(os.getenv("ANKIGEN_MAX_REVISION_ITERATIONS", "3")),
        )
    
    def should_use_agents(self) -> bool:
        """Determine if agents should be used based on current mode"""
        if self.mode == AgentMode.LEGACY:
            return False
        elif self.mode == AgentMode.AGENT_ONLY:
            return True
        elif self.mode == AgentMode.HYBRID:
            # Use agents if any agent features are enabled
            return (
                self.enable_subject_expert_agent or
                self.enable_pedagogical_agent or
                self.enable_content_structuring_agent or
                any([
                    self.enable_content_accuracy_judge,
                    self.enable_pedagogical_judge,
                    self.enable_clarity_judge,
                    self.enable_technical_judge,
                    self.enable_completeness_judge,
                ])
            )
        elif self.mode == AgentMode.A_B_TEST:
            # Use hash-based or random selection for A/B testing
            if self.ab_test_user_hash:
                # Use consistent hash-based selection
                import hashlib
                hash_value = int(hashlib.md5(self.ab_test_user_hash.encode()).hexdigest(), 16)
                return (hash_value % 100) < (self.ab_test_ratio * 100)
            else:
                # Use random selection (note: not session-consistent)
                import random
                return random.random() < self.ab_test_ratio
        
        return False
    
    def get_enabled_agents(self) -> Dict[str, bool]:
        """Get a dictionary of all enabled agents"""
        return {
            "subject_expert": self.enable_subject_expert_agent,
            "pedagogical": self.enable_pedagogical_agent,
            "content_structuring": self.enable_content_structuring_agent,
            "generation_coordinator": self.enable_generation_coordinator,
            "content_accuracy_judge": self.enable_content_accuracy_judge,
            "pedagogical_judge": self.enable_pedagogical_judge,
            "clarity_judge": self.enable_clarity_judge,
            "technical_judge": self.enable_technical_judge,
            "completeness_judge": self.enable_completeness_judge,
            "judge_coordinator": self.enable_judge_coordinator,
            "revision_agent": self.enable_revision_agent,
            "enhancement_agent": self.enable_enhancement_agent,
        }
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary for logging/debugging"""
        return {
            "mode": self.mode.value,
            "enabled_agents": self.get_enabled_agents(),
            "workflow_features": {
                "multi_agent_generation": self.enable_multi_agent_generation,
                "parallel_judging": self.enable_parallel_judging,
                "agent_handoffs": self.enable_agent_handoffs,
                "agent_tracing": self.enable_agent_tracing,
            },
            "ab_test_ratio": self.ab_test_ratio,
            "performance_config": {
                "timeout": self.agent_timeout,
                "max_retries": self.max_agent_retries,
                "caching": self.enable_agent_caching,
            },
            "quality_thresholds": {
                "min_judge_consensus": self.min_judge_consensus,
                "max_revision_iterations": self.max_revision_iterations,
            }
        }


def _env_bool(env_var: str, default: bool = False) -> bool:
    """Helper to parse boolean environment variables"""
    value = os.getenv(env_var, str(default)).lower()
    return value in ("true", "1", "yes", "on", "enabled")


# Global instance - can be overridden in tests or specific deployments
_global_flags: Optional[AgentFeatureFlags] = None


def get_feature_flags() -> AgentFeatureFlags:
    """Get the global feature flags instance"""
    global _global_flags
    if _global_flags is None:
        _global_flags = AgentFeatureFlags.from_env()
        logger.info(f"Loaded agent feature flags: {_global_flags.mode.value}")
        logger.debug(f"Feature flags config: {_global_flags.to_dict()}")
    return _global_flags


def set_feature_flags(flags: AgentFeatureFlags):
    """Set global feature flags (for testing or runtime reconfiguration)"""
    global _global_flags
    _global_flags = flags
    logger.info(f"Updated agent feature flags: {flags.mode.value}")


def reset_feature_flags():
    """Reset feature flags (reload from environment)"""
    global _global_flags
    _global_flags = None