File size: 22,818 Bytes
56fd459
 
 
 
 
 
 
 
 
 
313f83b
56fd459
313f83b
56fd459
 
 
 
313f83b
56fd459
 
 
313f83b
56fd459
313f83b
 
56fd459
313f83b
 
 
 
56fd459
 
 
 
313f83b
 
 
 
56fd459
 
313f83b
56fd459
313f83b
56fd459
313f83b
56fd459
313f83b
 
 
 
 
 
 
 
 
 
 
 
 
 
56fd459
313f83b
56fd459
313f83b
56fd459
 
 
 
 
 
313f83b
56fd459
 
 
313f83b
56fd459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313f83b
56fd459
 
313f83b
56fd459
313f83b
 
56fd459
 
313f83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fd459
313f83b
 
 
56fd459
313f83b
 
56fd459
313f83b
56fd459
313f83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fd459
313f83b
56fd459
 
313f83b
 
56fd459
313f83b
 
 
56fd459
313f83b
 
 
 
 
56fd459
313f83b
56fd459
 
 
 
 
 
313f83b
56fd459
313f83b
56fd459
 
 
313f83b
 
56fd459
313f83b
56fd459
313f83b
 
 
 
 
 
 
 
 
 
56fd459
 
313f83b
 
56fd459
 
 
 
 
313f83b
56fd459
 
 
313f83b
56fd459
313f83b
 
56fd459
313f83b
56fd459
313f83b
56fd459
 
313f83b
 
56fd459
 
313f83b
56fd459
 
313f83b
 
56fd459
313f83b
 
 
56fd459
 
 
313f83b
 
 
 
 
 
 
 
56fd459
313f83b
56fd459
313f83b
56fd459
 
 
313f83b
56fd459
 
 
 
 
 
 
313f83b
56fd459
313f83b
 
 
 
 
56fd459
 
313f83b
56fd459
313f83b
56fd459
 
 
 
 
 
313f83b
56fd459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313f83b
56fd459
 
 
313f83b
56fd459
313f83b
 
56fd459
313f83b
56fd459
313f83b
56fd459
 
313f83b
 
56fd459
 
313f83b
56fd459
 
313f83b
 
56fd459
313f83b
 
 
56fd459
 
 
 
 
313f83b
56fd459
313f83b
56fd459
 
 
313f83b
56fd459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313f83b
 
 
 
56fd459
 
 
 
313f83b
56fd459
 
 
313f83b
56fd459
313f83b
56fd459
 
 
 
 
 
 
 
313f83b
56fd459
 
 
313f83b
56fd459
313f83b
 
56fd459
313f83b
56fd459
313f83b
56fd459
 
 
 
313f83b
56fd459
 
 
 
 
 
 
 
313f83b
56fd459
 
313f83b
 
56fd459
 
 
 
313f83b
56fd459
313f83b
56fd459
 
313f83b
56fd459
313f83b
56fd459
 
 
 
313f83b
56fd459
 
 
 
 
 
313f83b
 
 
 
56fd459
313f83b
56fd459
 
 
 
313f83b
56fd459
313f83b
56fd459
 
313f83b
56fd459
 
313f83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# Specialized generator agents for card generation

import json
from typing import List, Dict, Any, Optional
from datetime import datetime

from openai import AsyncOpenAI

from ankigen_core.logging import logger
from ankigen_core.models import Card, CardFront, CardBack
from .base import BaseAgentWrapper
from .config import get_config_manager
from .schemas import CardsGenerationSchema


class SubjectExpertAgent(BaseAgentWrapper):
    """Subject matter expert agent for domain-specific card generation"""

    def __init__(self, openai_client: AsyncOpenAI, subject: str = "general"):
        config_manager = get_config_manager()
        base_config = config_manager.get_agent_config("subject_expert")

        if not base_config:
            raise ValueError(
                "subject_expert configuration not found - agent system not properly initialized"
            )

        # Enable structured output for card generation
        base_config.output_type = CardsGenerationSchema

        # Customize instructions for the specific subject
        if subject != "general" and base_config.custom_prompts:
            subject_prompt = base_config.custom_prompts.get(subject.lower(), "")
            if subject_prompt:
                base_config.instructions += (
                    f"\n\nSubject-specific guidance: {subject_prompt}"
                )

        super().__init__(base_config, openai_client)
        self.subject = subject

    async def generate_cards(
        self, topic: str, num_cards: int = 5, context: Optional[Dict[str, Any]] = None
    ) -> List[Card]:
        """Generate flashcards for a given topic"""
        try:
            user_input = f"Generate {num_cards} flashcards for the topic: {topic}"
            if context:
                user_input += f"\n\nAdditional context: {context}"

            response, usage = await self.execute(user_input, context)

            # Log usage information
            if usage and usage.get("total_tokens", 0) > 0:
                logger.info(
                    f"πŸ’° Token Usage: {usage['total_tokens']} tokens (Input: {usage['input_tokens']}, Output: {usage['output_tokens']})"
                )

            return self._parse_cards_response(response, topic)

        except Exception as e:
            logger.error(f"Card generation failed: {e}")
            raise

    def _build_generation_prompt(
        self,
        topic: str,
        num_cards: int,
        difficulty: str,
        prerequisites: List[str],
        context: Dict[str, Any],
    ) -> str:
        """Build the generation prompt"""
        prerequisites_str = ", ".join(prerequisites) if prerequisites else "None"

        prompt = f"""Generate {num_cards} high-quality flashcards for the topic: {topic}

Subject: {self.subject}
Difficulty Level: {difficulty}
Prerequisites: {prerequisites_str}

Requirements:
- Focus on {self.subject} concepts and terminology
- Ensure technical accuracy and depth appropriate for {difficulty} level
- Include practical applications and real-world examples
- Test understanding, not just memorization
- Use clear, unambiguous questions

Return your response as a JSON object with this structure:
{{
    "cards": [
        {{
            "card_type": "basic",
            "front": {{
                "question": "Clear, specific question"
            }},
            "back": {{
                "answer": "Concise, accurate answer",
                "explanation": "Detailed explanation with reasoning",
                "example": "Practical example or application"
            }},
            "metadata": {{
                "difficulty": "{difficulty}",
                "prerequisites": {json.dumps(prerequisites)},
                "topic": "{topic}",
                "subject": "{self.subject}",
                "learning_outcomes": ["outcome1", "outcome2"],
                "common_misconceptions": ["misconception1"]
            }}
        }}
    ]
}}"""

        if context.get("source_text"):
            prompt += f"\n\nBase the cards on this source material:\n{context['source_text'][:2000]}..."

        return prompt

    def _parse_cards_response(self, response: Any, topic: str) -> List[Card]:
        """Parse the agent response into Card objects"""
        try:
            # Handle structured output from CardsGenerationSchema
            if hasattr(response, "cards"):
                # Response is already a CardsGenerationSchema object
                logger.info(f"βœ… STRUCTURED OUTPUT RECEIVED: {type(response)}")
                card_data_list = response.cards
            elif isinstance(response, dict) and "cards" in response:
                # Response is a dict with cards
                card_data_list = response["cards"]
            elif isinstance(response, str):
                # Fallback: Clean up the response - remove markdown code blocks if present
                response = response.strip()
                if response.startswith("```json"):
                    response = response[7:]  # Remove ```json
                if response.startswith("```"):
                    response = response[3:]  # Remove ```
                if response.endswith("```"):
                    response = response[:-3]  # Remove trailing ```
                response = response.strip()

                data = json.loads(response)
                if "cards" not in data:
                    raise ValueError("Response missing 'cards' field")
                card_data_list = data["cards"]
            else:
                raise ValueError(f"Unexpected response format: {type(response)}")

            cards = []
            for i, card_data in enumerate(card_data_list):
                try:
                    # Handle both Pydantic models and dictionaries
                    if hasattr(card_data, "front"):
                        # Pydantic model
                        front_data = card_data.front
                        back_data = card_data.back
                        metadata = card_data.metadata
                        card_type = card_data.card_type
                    else:
                        # Dictionary
                        if "front" not in card_data or "back" not in card_data:
                            logger.warning(f"Skipping card {i}: missing front or back")
                            continue
                        front_data = card_data["front"]
                        back_data = card_data["back"]
                        metadata = card_data.get("metadata", {})
                        card_type = card_data.get("card_type", "basic")

                    # Extract question and answer
                    if hasattr(front_data, "question"):
                        question = front_data.question
                    else:
                        question = front_data.get("question", "")

                    if hasattr(back_data, "answer"):
                        answer = back_data.answer
                        explanation = back_data.explanation
                        example = back_data.example
                    else:
                        answer = back_data.get("answer", "")
                        explanation = back_data.get("explanation", "")
                        example = back_data.get("example", "")

                    if not question or not answer:
                        logger.warning(f"Skipping card {i}: missing question or answer")
                        continue

                    # Create Card object
                    card = Card(
                        card_type=card_type,
                        front=CardFront(question=question),
                        back=CardBack(
                            answer=answer,
                            explanation=explanation,
                            example=example,
                        ),
                        metadata=metadata
                        if isinstance(metadata, dict)
                        else metadata.dict()
                        if hasattr(metadata, "dict")
                        else {},
                    )

                    # Ensure metadata includes subject and topic
                    if card.metadata is not None:
                        if "subject" not in card.metadata:
                            card.metadata["subject"] = self.subject
                        if "topic" not in card.metadata:
                            card.metadata["topic"] = topic

                    cards.append(card)

                except Exception as e:
                    logger.warning(f"Failed to parse card {i}: {e}")
                    continue

            logger.info(f"βœ… PARSED {len(cards)} CARDS FROM STRUCTURED OUTPUT")
            return cards

        except json.JSONDecodeError as e:
            logger.error(f"πŸ’₯ JSON DECODE ERROR: {e}")
            logger.error("πŸ’₯ RAW RESPONSE THAT FAILED TO PARSE:")
            logger.error("---FAILED RESPONSE START---")
            logger.error(f"{response}")
            logger.error("---FAILED RESPONSE END---")
            logger.error(f"πŸ’₯ RESPONSE TYPE: {type(response)}")
            if isinstance(response, str):
                logger.error(f"πŸ’₯ RESPONSE LENGTH: {len(response)}")
                logger.error(f"πŸ’₯ FIRST 200 CHARS: {repr(response[:200])}")
                logger.error(f"πŸ’₯ LAST 200 CHARS: {repr(response[-200:])}")
            raise ValueError(f"Invalid JSON response from agent: {e}")
        except Exception as e:
            logger.error(f"πŸ’₯ GENERAL PARSING ERROR: {e}")
            logger.error(f"πŸ’₯ RESPONSE THAT CAUSED ERROR: {response}")
            raise


class PedagogicalAgent(BaseAgentWrapper):
    """Pedagogical specialist for educational effectiveness"""

    def __init__(self, openai_client: AsyncOpenAI):
        config_manager = get_config_manager()
        base_config = config_manager.get_agent_config("pedagogical")

        if not base_config:
            raise ValueError(
                "pedagogical configuration not found - agent system not properly initialized"
            )

        super().__init__(base_config, openai_client)

    async def review_cards(self, cards: List[Card]) -> List[Dict[str, Any]]:
        """Review cards for pedagogical effectiveness"""
        datetime.now()

        try:
            reviews = []

            for i, card in enumerate(cards):
                user_input = self._build_review_prompt(card, i)
                response, usage = await self.execute(user_input)

                try:
                    review_data = (
                        json.loads(response) if isinstance(response, str) else response
                    )
                    reviews.append(review_data)
                except Exception as e:
                    logger.warning(f"Failed to parse review for card {i}: {e}")
                    reviews.append(
                        {
                            "approved": True,
                            "feedback": f"Review parsing failed: {e}",
                            "improvements": [],
                        }
                    )

            # Record successful execution

            return reviews

        except Exception as e:
            logger.error(f"PedagogicalAgent review failed: {e}")
            raise

    def _parse_review_response(self, response) -> Dict[str, Any]:
        """Parse the review response into a dictionary"""
        try:
            if isinstance(response, str):
                data = json.loads(response)
            else:
                data = response

            # Validate required fields
            required_fields = [
                "pedagogical_quality",
                "clarity",
                "learning_effectiveness",
            ]
            if not all(field in data for field in required_fields):
                raise ValueError("Missing required review fields")

            return data

        except json.JSONDecodeError as e:
            logger.error(f"Failed to parse review response as JSON: {e}")
            raise ValueError(f"Invalid review response: {e}")
        except Exception as e:
            logger.error(f"Failed to parse review response: {e}")
            raise ValueError(f"Invalid review response: {e}")

    def _build_review_prompt(self, card: Card, index: int) -> str:
        """Build the review prompt for a single card"""
        return f"""Review this flashcard for pedagogical effectiveness:

Card {index + 1}:
Question: {card.front.question}
Answer: {card.back.answer}
Explanation: {card.back.explanation}
Example: {card.back.example}
Metadata: {json.dumps(card.metadata, indent=2)}

Evaluate the card based on:
1. Learning Objectives: Does it have clear, measurable learning goals?
2. Bloom's Taxonomy: What cognitive level does it target? Is it appropriate?
3. Cognitive Load: Is the information manageable for learners?
4. Difficulty Progression: Is the difficulty appropriate for the target level?
5. Educational Value: Does it promote deep learning vs. memorization?

Return your assessment as JSON:
{{
    "approved": true/false,
    "cognitive_level": "remember|understand|apply|analyze|evaluate|create",
    "difficulty_rating": 1-5,
    "cognitive_load": "low|medium|high",
    "educational_value": 1-5,
    "feedback": "Detailed pedagogical assessment",
    "improvements": ["specific improvement suggestion 1", "suggestion 2"],
    "learning_objectives": ["clear learning objective 1", "objective 2"]
}}"""


class ContentStructuringAgent(BaseAgentWrapper):
    """Content organization and formatting specialist"""

    def __init__(self, openai_client: AsyncOpenAI):
        config_manager = get_config_manager()
        base_config = config_manager.get_agent_config("content_structuring")

        if not base_config:
            raise ValueError(
                "content_structuring configuration not found - agent system not properly initialized"
            )

        super().__init__(base_config, openai_client)

    async def structure_cards(self, cards: List[Card]) -> List[Card]:
        """Structure and format cards for consistency"""
        datetime.now()

        try:
            structured_cards = []

            for i, card in enumerate(cards):
                user_input = self._build_structuring_prompt(card, i)
                response, usage = await self.execute(user_input)

                try:
                    structured_data = (
                        json.loads(response) if isinstance(response, str) else response
                    )
                    structured_card = self._parse_structured_card(structured_data, card)
                    structured_cards.append(structured_card)
                except Exception as e:
                    logger.warning(f"Failed to structure card {i}: {e}")
                    structured_cards.append(card)  # Keep original on failure

            return structured_cards

        except Exception as e:
            logger.error(f"ContentStructuringAgent failed: {e}")
            raise

    def _build_structuring_prompt(self, card: Card, index: int) -> str:
        """Build the structuring prompt for a single card"""
        return f"""Structure and format this flashcard for optimal learning:

Original Card {index + 1}:
Question: {card.front.question}
Answer: {card.back.answer}
Explanation: {card.back.explanation}
Example: {card.back.example}
Type: {card.card_type}
Metadata: {json.dumps(card.metadata, indent=2)}

Improve the card's structure and formatting:
1. Ensure clear, concise, unambiguous question
2. Provide complete, well-structured answer
3. Add comprehensive explanation with reasoning
4. Include relevant, practical example
5. Enhance metadata with appropriate tags and categorization
6. Maintain consistent formatting and style

Return the improved card as JSON:
{{
    "card_type": "basic|cloze",
    "front": {{
        "question": "Improved, clear question"
    }},
    "back": {{
        "answer": "Complete, well-structured answer",
        "explanation": "Comprehensive explanation with reasoning",
        "example": "Relevant, practical example"
    }},
    "metadata": {{
        "topic": "specific topic",
        "subject": "subject area",
        "difficulty": "beginner|intermediate|advanced",
        "tags": ["tag1", "tag2", "tag3"],
        "learning_outcomes": ["outcome1", "outcome2"],
        "prerequisites": ["prereq1", "prereq2"],
        "estimated_time": "time in minutes",
        "category": "category name"
    }}
}}"""

    def _parse_structured_card(
        self, structured_data: Dict[str, Any], original_card: Card
    ) -> Card:
        """Parse structured card data into Card object"""
        try:
            return Card(
                card_type=structured_data.get("card_type", original_card.card_type),
                front=CardFront(question=structured_data["front"]["question"]),
                back=CardBack(
                    answer=structured_data["back"]["answer"],
                    explanation=structured_data["back"].get("explanation", ""),
                    example=structured_data["back"].get("example", ""),
                ),
                metadata=structured_data.get("metadata", original_card.metadata),
            )
        except Exception as e:
            logger.warning(f"Failed to parse structured card: {e}")
            return original_card


class GenerationCoordinator(BaseAgentWrapper):
    """Coordinates the multi-agent card generation workflow"""

    def __init__(self, openai_client: AsyncOpenAI):
        config_manager = get_config_manager()
        base_config = config_manager.get_agent_config("generation_coordinator")

        if not base_config:
            raise ValueError(
                "generation_coordinator configuration not found - agent system not properly initialized"
            )

        super().__init__(base_config, openai_client)

        # Initialize specialized agents
        self.subject_expert = None
        self.pedagogical = PedagogicalAgent(openai_client)
        self.content_structuring = ContentStructuringAgent(openai_client)

    async def coordinate_generation(
        self,
        topic: str,
        subject: str = "general",
        num_cards: int = 5,
        difficulty: str = "intermediate",
        enable_review: bool = True,
        enable_structuring: bool = True,
        context: Dict[str, Any] = None,
    ) -> List[Card]:
        """Coordinate the full card generation pipeline"""
        datetime.now()

        try:
            # Initialize subject expert for the specific subject
            if not self.subject_expert or self.subject_expert.subject != subject:
                self.subject_expert = SubjectExpertAgent(self.openai_client, subject)

            logger.info(f"Starting coordinated generation: {topic} ({subject})")

            # Step 1: Generate initial cards
            cards = await self.subject_expert.generate_cards(
                topic=topic, num_cards=num_cards, context=context
            )

            # Step 2: Pedagogical review (optional)
            if enable_review and cards:
                logger.info("Performing pedagogical review...")
                reviews = await self.pedagogical.review_cards(cards)

                # Filter or flag cards based on reviews
                approved_cards = []
                for card, review in zip(cards, reviews):
                    if review.get("approved", True):
                        approved_cards.append(card)
                    else:
                        logger.info(
                            f"Card flagged for revision: {card.front.question[:50]}..."
                        )

                cards = approved_cards

            # Step 3: Content structuring (optional)
            if enable_structuring and cards:
                logger.info("Performing content structuring...")
                cards = await self.content_structuring.structure_cards(cards)

            # Record successful coordination

            logger.info(f"Generation coordination complete: {len(cards)} cards")
            return cards

        except Exception as e:
            logger.error(f"Generation coordination failed: {e}")
            raise

    async def generate_structured_cards(
        self,
        topic: str,
        num_cards: int = 5,
        difficulty: str = "intermediate",
        context: Optional[Dict[str, Any]] = None,
    ) -> List[Card]:
        """Generate structured flashcards with enhanced metadata"""
        try:
            user_input = f"""Generate {num_cards} structured flashcards for: {topic}

Difficulty: {difficulty}
Requirements:
- Include detailed metadata
- Add learning outcomes
- Specify prerequisites
- Include related concepts
- Estimate study time"""

            response, usage = await self.execute(user_input)

            # Log usage information
            if usage and usage.get("total_tokens", 0) > 0:
                logger.info(
                    f"πŸ’° Token Usage: {usage['total_tokens']} tokens (Input: {usage['input_tokens']}, Output: {usage['output_tokens']})"
                )

            # Parse the structured response directly since it should be a CardsGenerationSchema
            if hasattr(response, "cards") and response.cards:
                return response.cards
            else:
                logger.warning("No cards found in structured response")
                return []

        except Exception as e:
            logger.error(f"Structured card generation failed: {e}")
            raise

    async def generate_adaptive_cards(
        self,
        topic: str,
        learning_style: str = "visual",
        num_cards: int = 5,
        context: Optional[Dict[str, Any]] = None,
    ) -> List[Card]:
        """Generate cards adapted to specific learning styles"""
        try:
            user_input = f"""Generate {num_cards} flashcards for: {topic}

Learning Style: {learning_style}
Adapt the content format and presentation to match this learning style."""

            response, usage = await self.execute(user_input)

            # Log usage information
            if usage and usage.get("total_tokens", 0) > 0:
                logger.info(
                    f"πŸ’° Token Usage: {usage['total_tokens']} tokens (Input: {usage['input_tokens']}, Output: {usage['output_tokens']})"
                )

            # Parse the adaptive response directly since it should be a CardsGenerationSchema
            if hasattr(response, "cards") and response.cards:
                return response.cards
            else:
                logger.warning("No cards found in adaptive response")
                return []

        except Exception as e:
            logger.error(f"Adaptive card generation failed: {e}")
            raise