File size: 9,228 Bytes
56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b 56fd459 313f83b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# Main integration module for AnkiGen agent system
from typing import List, Dict, Any, Tuple
from datetime import datetime
from ankigen_core.logging import logger
from ankigen_core.models import Card
from ankigen_core.llm_interface import OpenAIClientManager
from .generators import GenerationCoordinator, SubjectExpertAgent
from .judges import JudgeCoordinator
from .enhancers import RevisionAgent, EnhancementAgent
class AgentOrchestrator:
"""Main orchestrator for the AnkiGen agent system"""
def __init__(self, client_manager: OpenAIClientManager):
self.client_manager = client_manager
self.openai_client = None
# Initialize coordinators
self.generation_coordinator = None
self.judge_coordinator = None
self.revision_agent = None
self.enhancement_agent = None
# All agents enabled by default
self.all_agents_enabled = True
async def initialize(self, api_key: str, model_overrides: Dict[str, str] = None):
"""Initialize the agent system"""
try:
# Initialize OpenAI client
await self.client_manager.initialize_client(api_key)
self.openai_client = self.client_manager.get_client()
# Set up model overrides if provided
if model_overrides:
from ankigen_core.agents.config import get_config_manager
config_manager = get_config_manager()
config_manager.update_models(model_overrides)
logger.info(f"Applied model overrides: {model_overrides}")
# Initialize all agents
self.generation_coordinator = GenerationCoordinator(self.openai_client)
self.judge_coordinator = JudgeCoordinator(self.openai_client)
self.revision_agent = RevisionAgent(self.openai_client)
self.enhancement_agent = EnhancementAgent(self.openai_client)
logger.info("Agent system initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize agent system: {e}")
raise
async def generate_cards_with_agents(
self,
topic: str,
subject: str = "general",
num_cards: int = 5,
difficulty: str = "intermediate",
enable_quality_pipeline: bool = True,
context: Dict[str, Any] = None,
) -> Tuple[List[Card], Dict[str, Any]]:
"""Generate cards using the agent system"""
start_time = datetime.now()
try:
# Agents are always enabled now
if not self.openai_client:
raise ValueError("Agent system not initialized")
logger.info(f"Starting agent-based card generation: {topic} ({subject})")
# Phase 1: Generation
cards = await self._generation_phase(
topic=topic,
subject=subject,
num_cards=num_cards,
difficulty=difficulty,
context=context,
)
# Phase 2: Quality Assessment
quality_results = {}
if enable_quality_pipeline and self.judge_coordinator:
cards, quality_results = await self._quality_phase(cards)
# Phase 3: Enhancement
if self.enhancement_agent:
cards = await self._enhancement_phase(cards)
# Collect metadata
metadata = {
"generation_method": "agent_system",
"generation_time": (datetime.now() - start_time).total_seconds(),
"cards_generated": len(cards),
"quality_results": quality_results,
"topic": topic,
"subject": subject,
"difficulty": difficulty,
}
logger.info(
f"Agent-based generation complete: {len(cards)} cards generated"
)
return cards, metadata
except Exception as e:
logger.error(f"Agent-based generation failed: {e}")
raise
async def _generation_phase(
self,
topic: str,
subject: str,
num_cards: int,
difficulty: str,
context: Dict[str, Any] = None,
) -> List[Card]:
"""Execute the card generation phase"""
if self.generation_coordinator:
# Use coordinated multi-agent generation
cards = await self.generation_coordinator.coordinate_generation(
topic=topic,
subject=subject,
num_cards=num_cards,
difficulty=difficulty,
enable_review=True,
enable_structuring=True,
context=context,
)
else:
# Use subject expert agent directly
subject_expert = SubjectExpertAgent(self.openai_client, subject)
cards = await subject_expert.generate_cards(
topic=topic, num_cards=num_cards, difficulty=difficulty, context=context
)
logger.info(f"Generation phase complete: {len(cards)} cards generated")
return cards
async def _quality_phase(
self, cards: List[Card]
) -> Tuple[List[Card], Dict[str, Any]]:
"""Execute the quality assessment and improvement phase"""
if not self.judge_coordinator:
return cards, {"message": "Judge coordinator not available"}
logger.info(f"Starting quality assessment for {len(cards)} cards")
# Judge all cards
judge_results = await self.judge_coordinator.coordinate_judgment(
cards=cards,
enable_parallel=True,
min_consensus=0.6,
)
# Separate approved and rejected cards
approved_cards = []
rejected_cards = []
for card, decisions, approved in judge_results:
if approved:
approved_cards.append(card)
else:
rejected_cards.append((card, decisions))
# Attempt to revise rejected cards
revised_cards = []
if self.revision_agent and rejected_cards:
logger.info(f"Attempting to revise {len(rejected_cards)} rejected cards")
for card, decisions in rejected_cards:
try:
revised_card = await self.revision_agent.revise_card(
card=card,
judge_decisions=decisions,
max_iterations=2,
)
# Re-judge the revised card
revision_results = await self.judge_coordinator.coordinate_judgment(
cards=[revised_card],
enable_parallel=False, # Single card, no need for parallel
min_consensus=0.6,
)
if revision_results and revision_results[0][2]: # If approved
revised_cards.append(revised_card)
else:
logger.warning(
f"Revised card still rejected: {card.front.question[:50]}..."
)
except Exception as e:
logger.error(f"Failed to revise card: {e}")
# Combine approved and successfully revised cards
final_cards = approved_cards + revised_cards
# Prepare quality results
quality_results = {
"total_cards_judged": len(cards),
"initially_approved": len(approved_cards),
"initially_rejected": len(rejected_cards),
"successfully_revised": len(revised_cards),
"final_approval_rate": len(final_cards) / len(cards) if cards else 0,
"judge_decisions": len(judge_results),
}
logger.info(
f"Quality phase complete: {len(final_cards)}/{len(cards)} cards approved"
)
return final_cards, quality_results
async def _enhancement_phase(self, cards: List[Card]) -> List[Card]:
"""Execute the enhancement phase"""
if not self.enhancement_agent:
return cards
logger.info(f"Starting enhancement for {len(cards)} cards")
enhanced_cards = await self.enhancement_agent.enhance_card_batch(
cards=cards, enhancement_targets=["explanation", "example", "metadata"]
)
logger.info(f"Enhancement phase complete: {len(enhanced_cards)} cards enhanced")
return enhanced_cards
def get_performance_metrics(self) -> Dict[str, Any]:
"""Get performance metrics for the agent system"""
# Basic performance info only
return {
"agents_enabled": True,
}
async def integrate_with_existing_workflow(
client_manager: OpenAIClientManager, api_key: str, **generation_params
) -> Tuple[List[Card], Dict[str, Any]]:
"""Integration point for existing AnkiGen workflow"""
# Agents are always enabled
# Initialize and use agent system
orchestrator = AgentOrchestrator(client_manager)
await orchestrator.initialize(api_key)
cards, metadata = await orchestrator.generate_cards_with_agents(**generation_params)
return cards, metadata
|