File size: 15,905 Bytes
56fd459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# Agent performance metrics collection and analysis

import time
from typing import Dict, Any, List, Optional
from dataclasses import dataclass, field
from datetime import datetime, timedelta
import json
from pathlib import Path

from ankigen_core.logging import logger


@dataclass
class AgentExecution:
    """Single agent execution record"""
    agent_name: str
    start_time: datetime
    end_time: datetime
    success: bool
    input_tokens: Optional[int] = None
    output_tokens: Optional[int] = None
    cost: Optional[float] = None
    error_message: Optional[str] = None
    metadata: Dict[str, Any] = field(default_factory=dict)
    
    @property
    def duration(self) -> float:
        """Execution duration in seconds"""
        return (self.end_time - self.start_time).total_seconds()
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary for serialization"""
        return {
            "agent_name": self.agent_name,
            "start_time": self.start_time.isoformat(),
            "end_time": self.end_time.isoformat(),
            "duration": self.duration,
            "success": self.success,
            "input_tokens": self.input_tokens,
            "output_tokens": self.output_tokens,
            "cost": self.cost,
            "error_message": self.error_message,
            "metadata": self.metadata
        }


@dataclass 
class AgentStats:
    """Aggregated statistics for an agent"""
    agent_name: str
    total_executions: int = 0
    successful_executions: int = 0
    total_duration: float = 0.0
    total_input_tokens: int = 0
    total_output_tokens: int = 0
    total_cost: float = 0.0
    error_count: int = 0
    last_execution: Optional[datetime] = None
    
    @property
    def success_rate(self) -> float:
        """Success rate as percentage"""
        if self.total_executions == 0:
            return 0.0
        return (self.successful_executions / self.total_executions) * 100
    
    @property
    def average_duration(self) -> float:
        """Average execution duration in seconds"""
        if self.total_executions == 0:
            return 0.0
        return self.total_duration / self.total_executions
    
    @property
    def average_cost(self) -> float:
        """Average cost per execution"""
        if self.total_executions == 0:
            return 0.0
        return self.total_cost / self.total_executions
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary for serialization"""
        return {
            "agent_name": self.agent_name,
            "total_executions": self.total_executions,
            "successful_executions": self.successful_executions,
            "success_rate": self.success_rate,
            "total_duration": self.total_duration,
            "average_duration": self.average_duration,
            "total_input_tokens": self.total_input_tokens,
            "total_output_tokens": self.total_output_tokens,
            "total_cost": self.total_cost,
            "average_cost": self.average_cost,
            "error_count": self.error_count,
            "last_execution": self.last_execution.isoformat() if self.last_execution else None
        }


class AgentMetrics:
    """Agent performance metrics collector and analyzer"""
    
    def __init__(self, persistence_dir: Optional[str] = None):
        self.persistence_dir = Path(persistence_dir) if persistence_dir else Path("metrics/agents")
        self.persistence_dir.mkdir(parents=True, exist_ok=True)
        
        self.executions: List[AgentExecution] = []
        self.agent_stats: Dict[str, AgentStats] = {}
        self._load_persisted_metrics()
    
    def record_execution(
        self,
        agent_name: str,
        start_time: datetime,
        end_time: datetime,
        success: bool,
        input_tokens: Optional[int] = None,
        output_tokens: Optional[int] = None,
        cost: Optional[float] = None,
        error_message: Optional[str] = None,
        metadata: Optional[Dict[str, Any]] = None
    ):
        """Record a single agent execution"""
        execution = AgentExecution(
            agent_name=agent_name,
            start_time=start_time,
            end_time=end_time,
            success=success,
            input_tokens=input_tokens,
            output_tokens=output_tokens,
            cost=cost,
            error_message=error_message,
            metadata=metadata or {}
        )
        
        self.executions.append(execution)
        self._update_agent_stats(execution)
        
        # Persist immediately for crash resilience
        self._persist_execution(execution)
        
        logger.debug(f"Recorded execution for {agent_name}: {execution.duration:.2f}s, success={success}")
    
    def _update_agent_stats(self, execution: AgentExecution):
        """Update aggregated statistics for an agent"""
        agent_name = execution.agent_name
        
        if agent_name not in self.agent_stats:
            self.agent_stats[agent_name] = AgentStats(agent_name=agent_name)
        
        stats = self.agent_stats[agent_name]
        stats.total_executions += 1
        stats.total_duration += execution.duration
        stats.last_execution = execution.end_time
        
        if execution.success:
            stats.successful_executions += 1
        else:
            stats.error_count += 1
        
        if execution.input_tokens:
            stats.total_input_tokens += execution.input_tokens
        
        if execution.output_tokens:
            stats.total_output_tokens += execution.output_tokens
        
        if execution.cost:
            stats.total_cost += execution.cost
    
    def get_agent_stats(self, agent_name: str) -> Optional[AgentStats]:
        """Get statistics for a specific agent"""
        return self.agent_stats.get(agent_name)
    
    def get_all_agent_stats(self) -> Dict[str, AgentStats]:
        """Get statistics for all agents"""
        return self.agent_stats.copy()
    
    def get_executions(
        self,
        agent_name: Optional[str] = None,
        start_time: Optional[datetime] = None,
        end_time: Optional[datetime] = None,
        success_only: Optional[bool] = None
    ) -> List[AgentExecution]:
        """Get filtered execution records"""
        filtered = self.executions
        
        if agent_name:
            filtered = [e for e in filtered if e.agent_name == agent_name]
        
        if start_time:
            filtered = [e for e in filtered if e.start_time >= start_time]
        
        if end_time:
            filtered = [e for e in filtered if e.end_time <= end_time]
        
        if success_only is not None:
            filtered = [e for e in filtered if e.success == success_only]
        
        return filtered
    
    def get_performance_report(self, hours: int = 24) -> Dict[str, Any]:
        """Generate a performance report for the last N hours"""
        cutoff_time = datetime.now() - timedelta(hours=hours)
        recent_executions = self.get_executions(start_time=cutoff_time)
        
        if not recent_executions:
            return {
                "period": f"Last {hours} hours",
                "total_executions": 0,
                "agents": {}
            }
        
        # Group by agent
        agent_executions = {}
        for execution in recent_executions:
            if execution.agent_name not in agent_executions:
                agent_executions[execution.agent_name] = []
            agent_executions[execution.agent_name].append(execution)
        
        # Calculate metrics per agent
        agent_reports = {}
        total_executions = 0
        total_successful = 0
        total_duration = 0.0
        total_cost = 0.0
        
        for agent_name, executions in agent_executions.items():
            successful = len([e for e in executions if e.success])
            total_dur = sum(e.duration for e in executions)
            total_cost_agent = sum(e.cost or 0 for e in executions)
            
            agent_reports[agent_name] = {
                "executions": len(executions),
                "successful": successful,
                "success_rate": (successful / len(executions)) * 100,
                "average_duration": total_dur / len(executions),
                "total_cost": total_cost_agent,
                "average_cost": total_cost_agent / len(executions) if total_cost_agent > 0 else 0
            }
            
            total_executions += len(executions)
            total_successful += successful
            total_duration += total_dur
            total_cost += total_cost_agent
        
        return {
            "period": f"Last {hours} hours",
            "total_executions": total_executions,
            "total_successful": total_successful,
            "overall_success_rate": (total_successful / total_executions) * 100 if total_executions > 0 else 0,
            "total_duration": total_duration,
            "average_duration": total_duration / total_executions if total_executions > 0 else 0,
            "total_cost": total_cost,
            "average_cost": total_cost / total_executions if total_cost > 0 and total_executions > 0 else 0,
            "agents": agent_reports
        }
    
    def get_quality_metrics(self) -> Dict[str, Any]:
        """Get quality-focused metrics for card generation"""
        # Get recent judge decisions
        judge_executions = [
            e for e in self.executions 
            if "judge" in e.agent_name.lower() and e.success
        ]
        
        if not judge_executions:
            return {"message": "No judge data available"}
        
        # Analyze judge decisions from metadata
        total_cards_judged = 0
        total_accepted = 0
        total_rejected = 0
        total_needs_revision = 0
        
        judge_stats = {}
        
        for execution in judge_executions:
            metadata = execution.metadata
            agent_name = execution.agent_name
            
            if agent_name not in judge_stats:
                judge_stats[agent_name] = {
                    "total_cards": 0,
                    "accepted": 0,
                    "rejected": 0,
                    "needs_revision": 0
                }
            
            # Extract decisions from metadata (format depends on implementation)
            cards_judged = metadata.get("cards_judged", 1)
            accepted = metadata.get("accepted", 0)
            rejected = metadata.get("rejected", 0)
            needs_revision = metadata.get("needs_revision", 0)
            
            judge_stats[agent_name]["total_cards"] += cards_judged
            judge_stats[agent_name]["accepted"] += accepted
            judge_stats[agent_name]["rejected"] += rejected
            judge_stats[agent_name]["needs_revision"] += needs_revision
            
            total_cards_judged += cards_judged
            total_accepted += accepted
            total_rejected += rejected
            total_needs_revision += needs_revision
        
        # Calculate rates
        acceptance_rate = (total_accepted / total_cards_judged) * 100 if total_cards_judged > 0 else 0
        rejection_rate = (total_rejected / total_cards_judged) * 100 if total_cards_judged > 0 else 0
        revision_rate = (total_needs_revision / total_cards_judged) * 100 if total_cards_judged > 0 else 0
        
        return {
            "total_cards_judged": total_cards_judged,
            "acceptance_rate": acceptance_rate,
            "rejection_rate": rejection_rate,
            "revision_rate": revision_rate,
            "judge_breakdown": judge_stats
        }
    
    def _persist_execution(self, execution: AgentExecution):
        """Persist a single execution to disk"""
        try:
            today = execution.start_time.strftime("%Y-%m-%d")
            file_path = self.persistence_dir / f"executions_{today}.jsonl"
            
            with open(file_path, 'a') as f:
                f.write(json.dumps(execution.to_dict()) + '\n')
                
        except Exception as e:
            logger.error(f"Failed to persist execution: {e}")
    
    def _load_persisted_metrics(self):
        """Load persisted metrics from disk"""
        try:
            # Load executions from the last 7 days
            for i in range(7):
                date = datetime.now() - timedelta(days=i)
                date_str = date.strftime("%Y-%m-%d")
                file_path = self.persistence_dir / f"executions_{date_str}.jsonl"
                
                if file_path.exists():
                    with open(file_path, 'r') as f:
                        for line in f:
                            try:
                                data = json.loads(line.strip())
                                execution = AgentExecution(
                                    agent_name=data["agent_name"],
                                    start_time=datetime.fromisoformat(data["start_time"]),
                                    end_time=datetime.fromisoformat(data["end_time"]),
                                    success=data["success"],
                                    input_tokens=data.get("input_tokens"),
                                    output_tokens=data.get("output_tokens"),
                                    cost=data.get("cost"),
                                    error_message=data.get("error_message"),
                                    metadata=data.get("metadata", {})
                                )
                                self.executions.append(execution)
                                self._update_agent_stats(execution)
                            except Exception as e:
                                logger.warning(f"Failed to parse execution record: {e}")
            
            logger.info(f"Loaded {len(self.executions)} persisted execution records")
            
        except Exception as e:
            logger.error(f"Failed to load persisted metrics: {e}")
    
    def cleanup_old_data(self, days: int = 30):
        """Clean up execution data older than specified days"""
        cutoff_time = datetime.now() - timedelta(days=days)
        
        # Remove from memory
        self.executions = [e for e in self.executions if e.start_time >= cutoff_time]
        
        # Rebuild stats from remaining executions
        self.agent_stats.clear()
        for execution in self.executions:
            self._update_agent_stats(execution)
        
        # Remove old files
        try:
            for file_path in self.persistence_dir.glob("executions_*.jsonl"):
                try:
                    date_str = file_path.stem.split("_")[1]
                    file_date = datetime.strptime(date_str, "%Y-%m-%d")
                    if file_date < cutoff_time:
                        file_path.unlink()
                        logger.info(f"Removed old metrics file: {file_path}")
                except Exception as e:
                    logger.warning(f"Failed to process metrics file {file_path}: {e}")
                    
        except Exception as e:
            logger.error(f"Failed to cleanup old metrics data: {e}")


# Global metrics instance
_global_metrics: Optional[AgentMetrics] = None


def get_metrics() -> AgentMetrics:
    """Get the global agent metrics instance"""
    global _global_metrics
    if _global_metrics is None:
        _global_metrics = AgentMetrics()
    return _global_metrics


def record_agent_execution(
    agent_name: str,
    start_time: datetime,
    end_time: datetime,
    success: bool,
    **kwargs
):
    """Convenience function to record an agent execution"""
    metrics = get_metrics()
    metrics.record_execution(
        agent_name=agent_name,
        start_time=start_time,
        end_time=end_time,
        success=success,
        **kwargs
    )