File size: 6,592 Bytes
313f83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
Token usage tracking for OpenAI API calls using tiktoken.
Provides accurate token counting and cost estimation.
"""

import tiktoken
from typing import Dict, List, Any, Optional
from dataclasses import dataclass, field
from datetime import datetime

from ankigen_core.logging import logger


@dataclass
class TokenUsage:
    """Track token usage for a single request"""

    prompt_tokens: int
    completion_tokens: int
    total_tokens: int
    estimated_cost: Optional[float]
    model: str
    timestamp: datetime = field(default_factory=datetime.now)


class TokenTracker:
    """Track token usage across multiple requests"""

    def __init__(self):
        self.usage_history: List[TokenUsage] = []
        self.total_cost = 0.0
        self.total_tokens = 0

    def count_tokens_for_messages(
        self, messages: List[Dict[str, str]], model: str
    ) -> int:
        try:
            encoding = tiktoken.encoding_for_model(model)
        except KeyError:
            encoding = tiktoken.get_encoding("o200k_base")

        tokens_per_message = 3
        tokens_per_name = 1

        num_tokens = 0
        for message in messages:
            num_tokens += tokens_per_message
            for key, value in message.items():
                num_tokens += len(encoding.encode(str(value)))
                if key == "name":
                    num_tokens += tokens_per_name

        num_tokens += 3
        return num_tokens

    def count_tokens_for_text(self, text: str, model: str) -> int:
        try:
            encoding = tiktoken.encoding_for_model(model)
        except KeyError:
            encoding = tiktoken.get_encoding("o200k_base")

        return len(encoding.encode(text))

    def estimate_cost(
        self, prompt_tokens: int, completion_tokens: int, model: str
    ) -> Optional[float]:
        return None

    def track_usage_from_response(
        self, response_data, model: str
    ) -> Optional[TokenUsage]:
        try:
            if hasattr(response_data, "usage"):
                usage = response_data.usage
                prompt_tokens = usage.prompt_tokens
                completion_tokens = usage.completion_tokens

                actual_cost = None
                if hasattr(usage, "total_cost"):
                    actual_cost = usage.total_cost
                elif hasattr(usage, "cost"):
                    actual_cost = usage.cost

                return self.track_usage(
                    prompt_tokens, completion_tokens, model, actual_cost
                )
            return None
        except Exception as e:
            logger.error(f"Failed to track usage from response: {e}")
            return None

    def track_usage(
        self,
        prompt_tokens: int,
        completion_tokens: int,
        model: str,
        actual_cost: Optional[float] = None,
    ) -> TokenUsage:
        total_tokens = prompt_tokens + completion_tokens

        if actual_cost is not None:
            final_cost = actual_cost
        else:
            final_cost = self.estimate_cost(prompt_tokens, completion_tokens, model)

        usage = TokenUsage(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=total_tokens,
            estimated_cost=final_cost,
            model=model,
        )

        self.usage_history.append(usage)
        if final_cost:
            self.total_cost += final_cost
        self.total_tokens += total_tokens

        logger.info(
            f"πŸ’° Token usage - Model: {model}, Prompt: {prompt_tokens}, Completion: {completion_tokens}, Cost: ${final_cost:.4f}"
            if final_cost
            else f"πŸ’° Token usage - Model: {model}, Prompt: {prompt_tokens}, Completion: {completion_tokens}"
        )

        return usage

    def get_session_summary(self) -> Dict[str, Any]:
        if not self.usage_history:
            return {
                "total_requests": 0,
                "total_tokens": 0,
                "total_cost": 0.0,
                "by_model": {},
            }

        by_model = {}
        for usage in self.usage_history:
            if usage.model not in by_model:
                by_model[usage.model] = {"requests": 0, "tokens": 0, "cost": 0.0}
            by_model[usage.model]["requests"] += 1
            by_model[usage.model]["tokens"] += usage.total_tokens
            if usage.estimated_cost:
                by_model[usage.model]["cost"] += usage.estimated_cost

        return {
            "total_requests": len(self.usage_history),
            "total_tokens": self.total_tokens,
            "total_cost": self.total_cost,
            "by_model": by_model,
        }

    def get_session_usage(self) -> Dict[str, Any]:
        return self.get_session_summary()

    def reset_session(self):
        self.usage_history.clear()
        self.total_cost = 0.0
        self.total_tokens = 0
        logger.info("πŸ”„ Token usage tracking reset")

    def track_usage_from_agents_sdk(
        self, usage_dict: Dict[str, Any], model: str
    ) -> Optional[TokenUsage]:
        """Track usage from OpenAI Agents SDK usage format"""
        try:
            if not usage_dict or usage_dict.get("total_tokens", 0) == 0:
                return None

            prompt_tokens = usage_dict.get("input_tokens", 0)
            completion_tokens = usage_dict.get("output_tokens", 0)

            return self.track_usage(prompt_tokens, completion_tokens, model)
        except Exception as e:
            logger.error(f"Failed to track usage from agents SDK: {e}")
            return None


# Global token tracker instance
_global_tracker = TokenTracker()


def get_token_tracker() -> TokenTracker:
    return _global_tracker


def track_agent_usage(
    prompt_text: str,
    completion_text: str,
    model: str,
    actual_cost: Optional[float] = None,
) -> TokenUsage:
    tracker = get_token_tracker()

    prompt_tokens = tracker.count_tokens_for_text(prompt_text, model)
    completion_tokens = tracker.count_tokens_for_text(completion_text, model)

    return tracker.track_usage(prompt_tokens, completion_tokens, model, actual_cost)


def track_usage_from_openai_response(response_data, model: str) -> Optional[TokenUsage]:
    tracker = get_token_tracker()
    return tracker.track_usage_from_response(response_data, model)


def track_usage_from_agents_sdk(
    usage_dict: Dict[str, Any], model: str
) -> Optional[TokenUsage]:
    """Track usage from OpenAI Agents SDK usage format"""
    tracker = get_token_tracker()
    return tracker.track_usage_from_agents_sdk(usage_dict, model)