File size: 41,790 Bytes
d09f6aa
 
 
 
100024e
 
 
d09f6aa
 
100024e
 
 
 
 
 
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
 
 
 
 
 
 
 
 
 
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
07fe6c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
07fe6c3
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100024e
d09f6aa
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
d09f6aa
100024e
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
 
 
 
 
d09f6aa
100024e
 
 
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07fe6c3
 
 
 
100024e
 
 
 
 
 
 
 
d09f6aa
100024e
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
 
 
 
 
 
d09f6aa
100024e
 
 
 
 
582e94d
100024e
 
 
 
 
d09f6aa
100024e
 
d09f6aa
100024e
 
 
 
 
 
 
 
 
 
 
 
07fe6c3
 
 
 
100024e
 
 
 
 
 
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
 
 
 
d09f6aa
100024e
d09f6aa
100024e
 
d09f6aa
100024e
 
 
 
 
 
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
 
d09f6aa
100024e
 
d09f6aa
100024e
d09f6aa
100024e
d09f6aa
100024e
 
d09f6aa
 
 
100024e
d09f6aa
100024e
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
 
100024e
d09f6aa
100024e
 
 
 
 
 
 
 
 
d09f6aa
 
100024e
d09f6aa
 
100024e
d09f6aa
100024e
d09f6aa
100024e
 
 
 
d09f6aa
 
 
100024e
 
d09f6aa
 
 
 
100024e
 
d09f6aa
 
100024e
d09f6aa
 
 
100024e
d09f6aa
 
100024e
 
 
 
 
 
 
 
 
 
 
d09f6aa
 
100024e
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
100024e
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
 
100024e
 
 
 
d09f6aa
 
 
 
100024e
d09f6aa
 
 
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
100024e
 
 
 
 
 
 
 
 
 
 
 
 
07fe6c3
 
 
 
 
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09f6aa
 
 
100024e
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
100024e
d09f6aa
100024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
# Module for core card generation logic

import gradio as gr
import pandas as pd
from typing import List, Dict, Any
import asyncio
from urllib.parse import urlparse

# Imports from our core modules
from ankigen_core.utils import (
    get_logger,
    ResponseCache,
    fetch_webpage_text,
    strip_html_tags,
)
from ankigen_core.llm_interface import OpenAIClientManager, structured_output_completion
from ankigen_core.models import (
    Card,
    CardFront,
    CardBack,
)  # Import necessary Pydantic models

logger = get_logger()

# --- Constants --- (Moved from app.py)
AVAILABLE_MODELS = [
    {
        "value": "gpt-4.1",
        "label": "gpt-4.1 (Best Quality)",
        "description": "Highest quality, slower generation",
    },
    {
        "value": "gpt-4.1-nano",
        "label": "gpt-4.1 Nano (Fast & Efficient)",
        "description": "Optimized for speed and lower cost",
    },
]

GENERATION_MODES = [
    {
        "value": "subject",
        "label": "Single Subject",
        "description": "Generate cards for a specific topic",
    },
    {
        "value": "path",
        "label": "Learning Path",
        "description": "Break down a job description or learning goal into subjects",
    },
    {
        "value": "text",
        "label": "From Text",
        "description": "Generate cards from provided text",
    },
    {
        "value": "web",
        "label": "From Web",
        "description": "Generate cards from a web page URL",
    },
]

# --- Core Functions --- (Moved and adapted from app.py)


async def generate_cards_batch(
    openai_client,  # Renamed from client to openai_client for clarity
    cache: ResponseCache,  # Added cache parameter
    model: str,
    topic: str,
    num_cards: int,
    system_prompt: str,
    generate_cloze: bool = False,
    batch_size: int = 3,  # Keep batch_size, though not explicitly used in this version
):
    """Generate a batch of cards for a topic, potentially including cloze deletions"""

    cloze_instruction = ""
    if generate_cloze:
        cloze_instruction = """
        Where appropriate, generate Cloze deletion cards.
        - For Cloze cards, set "card_type" to "cloze".
        - Format the question field using Anki's cloze syntax (e.g., "The capital of France is {{c1::Paris}}.").
        - The "answer" field should contain the full, non-cloze text or specific context for the cloze.
        - For standard question/answer cards, set "card_type" to "basic".
        """

    cards_prompt = f"""
    Generate {num_cards} flashcards for the topic: {topic}
    {cloze_instruction}
    Return your response as a JSON object with the following structure:
    {{
        "cards": [
            {{
                "card_type": "basic or cloze",
                "front": {{
                    "question": "question text (potentially with {{{{c1::cloze syntax}}}})"
                }},
                "back": {{
                    "answer": "concise answer or full text for cloze",
                    "explanation": "detailed explanation",
                    "example": "practical example"
                }},
                "metadata": {{
                    "prerequisites": ["list", "of", "prerequisites"],
                    "learning_outcomes": ["list", "of", "outcomes"],
                    "misconceptions": ["list", "of", "misconceptions"],
                    "difficulty": "beginner/intermediate/advanced"
                }}
            }}
            // ... more cards
        ]
    }}
    """

    try:
        logger.info(
            f"Generating card batch for {topic}, Cloze enabled: {generate_cloze}"
        )
        # Call the imported structured_output_completion, passing client and cache
        response = await structured_output_completion(
            openai_client=openai_client,
            model=model,
            response_format={"type": "json_object"},
            system_prompt=system_prompt,
            user_prompt=cards_prompt,
            cache=cache,  # Pass the cache instance
        )

        if not response or "cards" not in response:
            logger.error("Invalid cards response format")
            raise ValueError("Failed to generate cards. Please try again.")

        cards_list = []
        for card_data in response["cards"]:
            if "front" not in card_data or "back" not in card_data:
                logger.warning(
                    f"Skipping card due to missing front/back data: {card_data}"
                )
                continue
            if "question" not in card_data["front"]:
                logger.warning(f"Skipping card due to missing question: {card_data}")
                continue
            if (
                "answer" not in card_data["back"]
                or "explanation" not in card_data["back"]
                or "example" not in card_data["back"]
            ):
                logger.warning(
                    f"Skipping card due to missing answer/explanation/example: {card_data}"
                )
                continue

            # Use imported Pydantic models
            card = Card(
                card_type=card_data.get("card_type", "basic"),
                front=CardFront(
                    question=strip_html_tags(card_data["front"].get("question", ""))
                ),
                back=CardBack(
                    answer=strip_html_tags(card_data["back"].get("answer", "")),
                    explanation=strip_html_tags(
                        card_data["back"].get("explanation", "")
                    ),
                    example=strip_html_tags(card_data["back"].get("example", "")),
                ),
                metadata=card_data.get("metadata", {}),
            )
            cards_list.append(card)

        return cards_list

    except Exception as e:
        logger.error(
            f"Failed to generate cards batch for {topic}: {str(e)}", exc_info=True
        )
        raise  # Re-raise for the main function to handle


async def judge_card(
    openai_client,
    cache: ResponseCache,
    model: str,
    card: Card,
) -> bool:
    """Use an LLM to validate a single card."""
    system_prompt = (
        "You review flashcards and decide if the question is clear and useful. "
        'Respond with a JSON object like {"is_valid": true}.'
    )
    user_prompt = f"Question: {card.front.question}\nAnswer: {card.back.answer}"
    try:
        result = await structured_output_completion(
            openai_client=openai_client,
            model=model,
            response_format={"type": "json_object"},
            system_prompt=system_prompt,
            user_prompt=user_prompt,
            cache=cache,
        )
        if isinstance(result, dict):
            return bool(result.get("is_valid", True))
    except Exception as e:  # pragma: no cover - network or parse errors
        logger.warning(f"LLM judge failed for card '{card.front.question}': {e}")
    return True


async def judge_cards(
    openai_client,
    cache: ResponseCache,
    model: str,
    cards: List[Card],
) -> List[Card]:
    """Filter cards using the LLM judge."""
    validated: List[Card] = []
    for card in cards:
        if await judge_card(openai_client, cache, model, card):
            validated.append(card)
        else:
            logger.info(f"Card rejected by judge: {card.front.question}")
    return validated


async def orchestrate_card_generation(  # MODIFIED: Added async
    client_manager: OpenAIClientManager,  # Expect the manager
    cache: ResponseCache,  # Expect the cache instance
    # --- UI Inputs --- (These will be passed from app.py handler)
    api_key_input: str,
    subject: str,
    generation_mode: str,
    source_text: str,
    url_input: str,
    model_name: str,
    topic_number: int,
    cards_per_topic: int,
    preference_prompt: str,
    generate_cloze: bool,
    use_llm_judge: bool = False,
):
    """Orchestrates the card generation process based on UI inputs."""

    logger.info(f"Starting card generation orchestration in {generation_mode} mode")
    logger.debug(
        f"Parameters: mode={generation_mode}, topics={topic_number}, cards_per_topic={cards_per_topic}, cloze={generate_cloze}"
    )

    # --- Initialization and Validation ---
    if not api_key_input:
        logger.warning("No API key provided to orchestrator")
        gr.Error("OpenAI API key is required")
        return pd.DataFrame(columns=get_dataframe_columns()), "API key is required.", 0
    # Re-initialize client via manager if API key changes or not initialized
    # This logic might need refinement depending on how API key state is managed in UI
    try:
        # Attempt to initialize (will raise error if key is invalid)
        await client_manager.initialize_client(api_key_input)
        openai_client = client_manager.get_client()
    except (ValueError, RuntimeError, Exception) as e:
        logger.error(f"Client initialization failed in orchestrator: {e}")
        gr.Error(f"OpenAI Client Error: {e}")
        return (
            pd.DataFrame(columns=get_dataframe_columns()),
            f"OpenAI Client Error: {e}",
            0,
        )

    model = model_name
    flattened_data = []
    total_cards_generated = 0
    # Use track_tqdm=True in the calling Gradio handler if desired
    # progress_tracker = gr.Progress(track_tqdm=True)

    # -------------------------------------

    try:
        # page_text_for_generation = "" # No longer needed here

        # --- Web Mode (Crawler) is now handled by crawl_and_generate in ui_logic.py ---
        # The 'web' case for orchestrate_card_generation is removed as it's a separate flow.
        # This function now handles 'subject', 'path', and 'text' (where text can be a URL).

        # --- Subject Mode ---
        if generation_mode == "subject":
            logger.info("Orchestrator: Subject Mode")
            if not subject or not subject.strip():
                gr.Error("Subject is required for 'Single Subject' mode.")
                return (
                    pd.DataFrame(columns=get_dataframe_columns()),
                    "Subject is required.",
                    gr.update(
                        value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                        visible=False,
                    ),
                )
            system_prompt = f"""You are an expert in {subject} and an experienced educator. {preference_prompt}"""
            # Split subjects if multiple are comma-separated
            individual_subjects = [s.strip() for s in subject.split(",") if s.strip()]
            if (
                not individual_subjects
            ):  # Handle case where subject might be just commas or whitespace
                gr.Error("Valid subject(s) required.")
                return (
                    pd.DataFrame(columns=get_dataframe_columns()),
                    "Valid subject(s) required.",
                    gr.update(
                        value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                        visible=False,
                    ),
                )

            topics_for_generation = []
            max(1, topic_number // len(individual_subjects))  # Distribute topic_number

            for ind_subject in individual_subjects:
                # For single/multiple subjects, we might generate sub-topics or just use the subject as a topic
                # For simplicity, let's assume each subject passed is a "topic" for now,
                # and cards_per_topic applies to each.
                # Or, if topic_number > 1, we could try to make LLM break down ind_subject into num_topics_per_subject.
                # Current UI has "Number of Topics" and "Cards per Topic".
                # If "Number of Topics" is meant per subject provided, then this logic needs care.
                # Let's assume "Number of Topics" is total, and we divide it.
                # If "Single Subject" mode, topic_number might represent sub-topics of that single subject.

                # For now, let's simplify: treat each provided subject as a high-level topic.
                # And generate 'cards_per_topic' for each. 'topic_number' might be less relevant here or define sub-breakdown.
                # To align with UI (topic_number and cards_per_topic), if multiple subjects,
                # we could make `topic_number` apply to how many sub-topics to generate for EACH subject,
                # and `cards_per_topic` for each of those sub-topics.
                # Or, if len(individual_subjects) > 1, `topic_number` is ignored and we use `cards_per_topic` for each subject.

                # Simpler: if 1 subject, topic_number is subtopics. If multiple, each is a topic.
                if len(individual_subjects) == 1:
                    # If it's a single subject, we might want to break it down into `topic_number` sub-topics.
                    # This would require an LLM call to get sub-topics first.
                    # For now, let's treat the single subject as one topic, and `topic_number` is ignored.
                    # Or, let's assume `topic_number` means we want `topic_number` variations or aspects of this subject.
                    # The prompt for generate_cards_batch takes a "topic".
                    # Let's create `topic_number` "topics" that are just slight variations or aspects of the main subject.
                    if topic_number == 1:
                        topics_for_generation.append(
                            {"name": ind_subject, "num_cards": cards_per_topic}
                        )
                    else:
                        # This is a placeholder for a more sophisticated sub-topic generation
                        # For now, just make `topic_number` distinct calls for the same subject if user wants more "topics"
                        # gr.Info(f"Generating for {topic_number} aspects/sub-sections of '{ind_subject}'.")
                        for i in range(topic_number):
                            topics_for_generation.append(
                                {
                                    "name": f"{ind_subject} - Aspect {i + 1}",
                                    "num_cards": cards_per_topic,
                                }
                            )
                else:  # Multiple subjects provided
                    topics_for_generation.append(
                        {"name": ind_subject, "num_cards": cards_per_topic}
                    )

        # --- Learning Path Mode ---
        elif generation_mode == "path":
            logger.info("Orchestrator: Learning Path Mode")
            # In path mode, 'subject' contains the pre-analyzed subjects, comma-separated.
            # 'description' (the learning goal) was used by analyze_learning_path, not directly here for card gen.
            if (
                not subject or not subject.strip()
            ):  # 'subject' here comes from the anki_cards_data_df after analysis
                gr.Error("No subjects provided from learning path analysis.")
                return (
                    pd.DataFrame(columns=get_dataframe_columns()),
                    "No subjects from path analysis.",
                    gr.update(
                        value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                        visible=False,
                    ),
                )

            system_prompt = f"""You are an expert in curriculum design and an experienced educator. {preference_prompt}"""
            analyzed_subjects = [s.strip() for s in subject.split(",") if s.strip()]
            if not analyzed_subjects:
                gr.Error("No valid subjects parsed from learning path.")
                return (
                    pd.DataFrame(columns=get_dataframe_columns()),
                    "No valid subjects from path.",
                    gr.update(
                        value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                        visible=False,
                    ),
                )

            # topic_number might be interpreted as how many cards to generate for EACH analyzed subject,
            # or how many sub-topics to break each analyzed subject into.
            # Given "Cards per Topic" slider, it's more likely each analyzed subject is a "topic".
            topics_for_generation = [
                {"name": subj, "num_cards": cards_per_topic}
                for subj in analyzed_subjects
            ]

        # --- Text Mode / Single Web Page from Text Mode ---
        elif generation_mode == "text":
            logger.info("Orchestrator: Text Mode")
            actual_text_to_process = source_text

            if (
                not actual_text_to_process or not actual_text_to_process.strip()
            ):  # Check after potential fetch
                gr.Error("Text input is empty.")
                return (
                    pd.DataFrame(columns=get_dataframe_columns()),
                    "Text input is empty.",
                    gr.update(
                        value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                        visible=False,
                    ),
                )

            # Check if source_text is a URL
            # Use a more robust check for URL (e.g., regex or urllib.parse)
            is_url = False
            if isinstance(source_text, str) and source_text.strip().lower().startswith(
                ("http://", "https://")
            ):
                try:
                    # A more robust check could involve trying to parse it
                    result = urlparse(source_text.strip())
                    if all([result.scheme, result.netloc]):
                        is_url = True
                except ImportError:  # Fallback if urlparse not available (should be)
                    pass  # is_url remains False

            if is_url:
                url_to_fetch = source_text.strip()
                logger.info(f"Text mode identified URL: {url_to_fetch}")
                gr.Info(f"🕸️ Fetching content from URL in text field: {url_to_fetch}...")
                try:
                    page_content = await asyncio.to_thread(
                        fetch_webpage_text, url_to_fetch
                    )  # Ensure fetch_webpage_text is thread-safe or run in executor
                    if not page_content or not page_content.strip():
                        gr.Warning(
                            f"Could not extract meaningful text from URL: {url_to_fetch}. Please check the URL or page content."
                        )
                        return (
                            pd.DataFrame(columns=get_dataframe_columns()),
                            "No meaningful text extracted from URL.",
                            gr.update(
                                value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                                visible=False,
                            ),
                        )
                    actual_text_to_process = page_content
                    source_text_display_name = f"Content from {url_to_fetch}"
                    gr.Info(
                        f"✅ Successfully fetched text from URL (approx. {len(actual_text_to_process)} chars)."
                    )
                except Exception as e:
                    logger.error(
                        f"Failed to fetch or process URL {url_to_fetch} in text mode: {e}",
                        exc_info=True,
                    )
                    gr.Error(f"Failed to fetch content from URL: {str(e)}")
                    return (
                        pd.DataFrame(columns=get_dataframe_columns()),
                        f"URL fetch error: {str(e)}",
                        gr.update(
                            value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                            visible=False,
                        ),
                    )
            else:  # Not a URL, or failed to parse as one
                if (
                    not source_text or not source_text.strip()
                ):  # Re-check original source_text if not a URL
                    gr.Error("Text input is empty.")
                    return (
                        pd.DataFrame(columns=get_dataframe_columns()),
                        "Text input is empty.",
                        gr.update(
                            value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                            visible=False,
                        ),
                    )
                actual_text_to_process = source_text  # Use as is
                source_text_display_name = "Content from Provided Text"
                logger.info("Text mode: Processing provided text directly.")

            # For text mode (either direct text or fetched from URL), generate cards from this content.
            # The LLM will need the text. We can pass it via the system prompt or a specialized user prompt.
            # For now, let's use a system prompt that tells it to base cards on the provided text.
            # And we'll create one "topic" for all cards.

            system_prompt = f"""You are an expert in distilling information and creating flashcards from text. {preference_prompt}
            Base your flashcards STRICTLY on the following text content provided by the user in their next message.
            Do not use external knowledge unless explicitly asked to clarify something from the text.
            The user will provide the text content that needs to be turned into flashcards."""  # System prompt now expects text in user prompt.

            # The user_prompt in generate_cards_batch will need to include actual_text_to_process.
            # Let's adapt generate_cards_batch or how it's called for this.
            # For now, let's assume generate_cards_batch's `cards_prompt` will be wrapped or modified
            # to include `actual_text_to_process` when `generation_mode` is "text".

            # This requires a change in how `generate_cards_batch` constructs its `cards_prompt` if text is primary.
            # Alternative: pass `actual_text_to_process` as part of the user_prompt to `structured_output_completion`
            # directly from here, bypassing `generate_cards_batch`'s topic-based prompt for "text" mode.
            # This seems cleaner.

            # Let's make a direct call to structured_output_completion for "text" mode.
            text_mode_user_prompt = f"""
            Please generate {cards_per_topic * topic_number} flashcards based on the following text content.
            I have already provided the text content in the system prompt (or it is implicitly part of this context).
            Ensure the flashcards cover diverse aspects of the text.
            {get_cloze_instruction(generate_cloze)}
            Return your response as a JSON object with the following structure:
            {get_card_json_structure_prompt()}

            Text Content to process:
            ---
            {actual_text_to_process[:15000]}
            ---
            """  # Truncate to avoid excessive length, system prompt already set context.

            gr.Info(f"Generating cards from: {source_text_display_name}...")
            try:
                response = await structured_output_completion(
                    openai_client=openai_client,
                    model=model,
                    response_format={"type": "json_object"},
                    system_prompt=system_prompt,  # System prompt instructs to use text from user prompt
                    user_prompt=text_mode_user_prompt,  # User prompt contains the text
                    cache=cache,
                )
                raw_cards = []  # Default if response is None
                if response:
                    raw_cards = response.get("cards", [])
                else:
                    logger.warning(
                        "structured_output_completion returned None, defaulting to empty card list for text mode."
                    )
                processed_cards = process_raw_cards_data(raw_cards)
                if use_llm_judge and processed_cards:
                    processed_cards = await judge_cards(
                        openai_client, cache, model, processed_cards
                    )
                formatted_cards = format_cards_for_dataframe(
                    processed_cards, topic_name=source_text_display_name, start_index=1
                )
                flattened_data.extend(formatted_cards)
                total_cards_generated += len(formatted_cards)

                # Skip topics_for_generation loop for text mode as cards are generated directly.
                topics_for_generation = []  # Ensure it's empty

            except Exception as e:
                logger.error(
                    f"Error during 'From Text' card generation: {e}", exc_info=True
                )
                gr.Error(f"Error generating cards from text: {str(e)}")
                return (
                    pd.DataFrame(columns=get_dataframe_columns()),
                    f"Text Gen Error: {str(e)}",
                    gr.update(
                        value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                        visible=False,
                    ),
                )

        else:  # Should not happen if generation_mode is validated, but as a fallback
            logger.error(f"Unknown generation mode: {generation_mode}")
            gr.Error(f"Unknown generation mode: {generation_mode}")
            return (
                pd.DataFrame(columns=get_dataframe_columns()),
                "Unknown mode.",
                gr.update(
                    value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                    visible=False,
                ),
            )

        # --- Batch Generation Loop (for subject and path modes) ---
        # progress_total_batches = len(topics_for_generation)
        # current_batch_num = 0

        for topic_info in (
            topics_for_generation
        ):  # This loop will be skipped if text_mode populated flattened_data directly
            # current_batch_num += 1
            # progress_tracker.progress(current_batch_num / progress_total_batches, desc=f"Generating for topic: {topic_info['name']}")
            # logger.info(f"Progress: {current_batch_num}/{progress_total_batches} - Topic: {topic_info['name']}")
            gr.Info(
                f"Generating cards for topic: {topic_info['name']}..."
            )  # UI feedback

            try:
                # System prompt is already set based on mode (subject/path)
                # generate_cards_batch will use this system_prompt
                batch_cards = await generate_cards_batch(
                    openai_client,
                    cache,
                    model,
                    topic_info["name"],
                    topic_info["num_cards"],
                    system_prompt,  # System prompt defined above based on mode
                    generate_cloze,
                )
                if use_llm_judge and batch_cards:
                    batch_cards = await judge_cards(
                        openai_client, cache, model, batch_cards
                    )
                # Assign topic name to cards before formatting for DataFrame
                formatted_batch = format_cards_for_dataframe(
                    batch_cards,
                    topic_name=topic_info["name"],
                    start_index=total_cards_generated + 1,
                )
                flattened_data.extend(formatted_batch)
                total_cards_generated += len(formatted_batch)
                logger.info(
                    f"Generated {len(formatted_batch)} cards for topic {topic_info['name']}"
                )

            except Exception as e:
                logger.error(
                    f"Error generating cards for topic {topic_info['name']}: {e}",
                    exc_info=True,
                )
                # Optionally, decide if one topic failing should stop all, or just skip
                gr.Warning(
                    f"Could not generate cards for topic '{topic_info['name']}': {str(e)}. Skipping."
                )
                continue  # Continue to next topic

        # --- Final Processing ---
        if not flattened_data:
            gr.Info(
                "No cards were generated."
            )  # More informative than just empty table
            # Return empty dataframe with correct columns
            return (
                pd.DataFrame(columns=get_dataframe_columns()),
                "No cards generated.",
                gr.update(
                    value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                    visible=False,
                ),
            )

        # Deduplication (if needed, and if it makes sense across different topics)
        # For now, deduplication logic might be too aggressive if topics are meant to have overlapping concepts from different angles.
        # final_cards_data = deduplicate_cards(flattened_data) # Assuming deduplicate_cards expects list of dicts
        final_cards_data = (
            flattened_data  # Skipping deduplication for now to preserve topic structure
        )

        # Re-index cards if deduplication changed the count or if start_index logic wasn't perfect
        # For now, format_cards_for_dataframe handles indexing.

        output_df = pd.DataFrame(final_cards_data, columns=get_dataframe_columns())

        total_cards_message = f"<div><b>Total Cards Generated:</b> <span id='total-cards-count'>{len(output_df)}</span></div>"

        logger.info(f"Orchestration complete. Total cards: {len(output_df)}")
        return output_df, total_cards_message

    except Exception as e:
        logger.error(
            f"Critical error in orchestrate_card_generation: {e}", exc_info=True
        )
        gr.Error(f"An unexpected error occurred: {str(e)}")
        return (
            pd.DataFrame(columns=get_dataframe_columns()),
            f"Unexpected error: {str(e)}",
            gr.update(
                value="<div><b>Total Cards Generated:</b> <span id='total-cards-count'>0</span></div>",
                visible=False,
            ),
        )
    finally:
        # Placeholder if any cleanup is needed
        pass


# Helper function to get Cloze instruction string
def get_cloze_instruction(generate_cloze: bool) -> str:
    if generate_cloze:
        return """
        Where appropriate, generate Cloze deletion cards.
        - For Cloze cards, set "card_type" to "cloze".
        - Format the question field using Anki's cloze syntax (e.g., "The capital of France is {{c1::Paris}}.").
        - The "answer" field should contain the full, non-cloze text or specific context for the cloze.
        - For standard question/answer cards, set "card_type" to "basic".
        """
    return ""


# Helper function to get JSON structure prompt for cards
def get_card_json_structure_prompt() -> str:
    return """
    {
        "cards": [
            {
                "card_type": "basic or cloze",
                "front": {
                    "question": "question text (potentially with {{{{c1::cloze syntax}}}})"
                },
                "back": {
                    "answer": "concise answer or full text for cloze",
                    "explanation": "detailed explanation",
                    "example": "practical example"
                },
                "metadata": {
                    "prerequisites": ["list", "of", "prerequisites"],
                    "learning_outcomes": ["list", "of", "outcomes"],
                    "misconceptions": ["list", "of", "misconceptions"],
                    "difficulty": "beginner/intermediate/advanced"
                }
            }
            // ... more cards
        ]
    }
    """


# Helper function to process raw card data from LLM into Card Pydantic models
def process_raw_cards_data(cards_data: list) -> list[Card]:
    cards_list = []
    if not isinstance(cards_data, list):
        logger.warning(
            f"Expected a list of cards, got {type(cards_data)}. Raw data: {cards_data}"
        )
        return cards_list

    for card_item in cards_data:
        if not isinstance(card_item, dict):
            logger.warning(
                f"Expected card item to be a dict, got {type(card_item)}. Item: {card_item}"
            )
            continue
        try:
            # Basic validation for essential fields
            if (
                not all(k in card_item for k in ["front", "back"])
                or not isinstance(card_item["front"], dict)
                or not isinstance(card_item["back"], dict)
                or "question" not in card_item["front"]
                or "answer" not in card_item["back"]
            ):
                logger.warning(
                    f"Skipping card due to missing essential fields: {card_item}"
                )
                continue

            card = Card(
                card_type=card_item.get("card_type", "basic"),
                front=CardFront(
                    question=strip_html_tags(card_item["front"].get("question", ""))
                ),
                back=CardBack(
                    answer=strip_html_tags(card_item["back"].get("answer", "")),
                    explanation=strip_html_tags(
                        card_item["back"].get("explanation", "")
                    ),
                    example=strip_html_tags(card_item["back"].get("example", "")),
                ),
                metadata=card_item.get("metadata", {}),
            )
            cards_list.append(card)
        except Exception as e:  # Catch Pydantic validation errors or others
            logger.error(
                f"Error processing card data item: {card_item}. Error: {e}",
                exc_info=True,
            )
    return cards_list


# --- Formatting and Utility Functions --- (Moved and adapted)
def format_cards_for_dataframe(
    cards: list[Card], topic_name: str, topic_index: int = 0, start_index: int = 1
) -> list:
    """Formats a list of Card objects into a list of dictionaries for DataFrame display.
    Ensures all data is plain text.
    """
    formatted_cards = []
    for i, card_obj in enumerate(cards):
        actual_index = start_index + i
        card_type = card_obj.card_type or "basic"
        question = card_obj.front.question or ""
        answer = card_obj.back.answer or ""
        explanation = card_obj.back.explanation or ""
        example = card_obj.back.example or ""

        # Metadata processing
        metadata = card_obj.metadata or {}
        prerequisites = metadata.get("prerequisites", [])
        learning_outcomes = metadata.get("learning_outcomes", [])
        common_misconceptions = metadata.get("misconceptions", [])
        difficulty = metadata.get("difficulty", "N/A")
        # Ensure list-based metadata are joined as plain strings for DataFrame
        prerequisites_str = strip_html_tags(
            ", ".join(prerequisites)
            if isinstance(prerequisites, list)
            else str(prerequisites)
        )
        learning_outcomes_str = strip_html_tags(
            ", ".join(learning_outcomes)
            if isinstance(learning_outcomes, list)
            else str(learning_outcomes)
        )
        common_misconceptions_str = strip_html_tags(
            ", ".join(common_misconceptions)
            if isinstance(common_misconceptions, list)
            else str(common_misconceptions)
        )
        difficulty_str = strip_html_tags(str(difficulty))

        formatted_card = {
            "Index": (
                f"{topic_index}.{actual_index}"
                if topic_index > 0
                else str(actual_index)
            ),
            "Topic": strip_html_tags(topic_name),  # Ensure topic is also plain
            "Card_Type": strip_html_tags(card_type),
            "Question": question,  # Already stripped during Card object creation
            "Answer": answer,  # Already stripped
            "Explanation": explanation,  # Already stripped
            "Example": example,  # Already stripped
            "Prerequisites": prerequisites_str,
            "Learning_Outcomes": learning_outcomes_str,
            "Common_Misconceptions": common_misconceptions_str,
            "Difficulty": difficulty_str,  # Ensure difficulty is plain text
            "Source_URL": strip_html_tags(
                metadata.get("source_url", "")
            ),  # Ensure Source_URL is plain
        }
        formatted_cards.append(formatted_card)
    return formatted_cards


def get_dataframe_columns() -> list[str]:
    """Returns the standard list of columns for the Anki card DataFrame."""
    return [
        "Index",
        "Topic",
        "Card_Type",
        "Question",
        "Answer",
        "Explanation",
        "Example",
        "Prerequisites",
        "Learning_Outcomes",
        "Common_Misconceptions",
        "Difficulty",
        "Source_URL",
    ]


# This function might be specific to the old crawler flow if AnkiCardData is only from there.
# If orchestrate_card_generation now also produces something convertible to AnkiCardData, it might be useful.
# For now, it's used by generate_cards_from_crawled_content.
def deduplicate_cards(cards: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
    """Deduplicates a list of card dictionaries based on the 'Question' field."""
    seen_questions = set()
    unique_cards = []
    for card_dict in cards:
        question = card_dict.get("Question")
        if question is None:  # Should not happen if cards are well-formed
            logger.warning(f"Card dictionary missing 'Question' key: {card_dict}")
            unique_cards.append(card_dict)  # Keep it if no question to dedupe on
            continue

        # Normalize whitespace and case for deduplication
        normalized_question = " ".join(str(question).strip().lower().split())
        if normalized_question not in seen_questions:
            seen_questions.add(normalized_question)
            unique_cards.append(card_dict)
        else:
            logger.info(f"Deduplicated card with question: {question}")
    return unique_cards


# --- Modification for generate_cards_from_crawled_content ---


def generate_cards_from_crawled_content(
    all_cards: List[Card],
) -> List[Dict[str, Any]]:  # Changed AnkiCardData to Card
    """
    Processes a list of Card objects (expected to have plain text fields after generate_cards_batch)
    and formats them into a list of dictionaries suitable for the DataFrame.
    """
    if not all_cards:
        return []

    data_for_dataframe = []
    for i, card_obj in enumerate(all_cards):
        # Extract data, assuming it's already plain text from Card object creation
        topic = (
            card_obj.metadata.get("topic", f"Crawled Content - Card {i+1}")
            if card_obj.metadata
            else f"Crawled Content - Card {i+1}"
        )

        # Ensure list-based metadata are joined as plain strings for DataFrame
        prerequisites = (
            card_obj.metadata.get("prerequisites", []) if card_obj.metadata else []
        )
        learning_outcomes = (
            card_obj.metadata.get("learning_outcomes", []) if card_obj.metadata else []
        )
        common_misconceptions = (
            card_obj.metadata.get("common_misconceptions", [])
            if card_obj.metadata
            else []
        )

        prerequisites_str = strip_html_tags(
            ", ".join(prerequisites)
            if isinstance(prerequisites, list)
            else str(prerequisites)
        )
        learning_outcomes_str = strip_html_tags(
            ", ".join(learning_outcomes)
            if isinstance(learning_outcomes, list)
            else str(learning_outcomes)
        )
        common_misconceptions_str = strip_html_tags(
            ", ".join(common_misconceptions)
            if isinstance(common_misconceptions, list)
            else str(common_misconceptions)
        )
        difficulty_str = strip_html_tags(
            str(
                card_obj.metadata.get("difficulty", "N/A")
                if card_obj.metadata
                else "N/A"
            )
        )

        card_dict = {
            "Index": str(i + 1),
            "Topic": strip_html_tags(topic),
            "Card_Type": strip_html_tags(card_obj.card_type or "basic"),
            "Question": card_obj.front.question or "",  # Should be plain
            "Answer": card_obj.back.answer or "",  # Should be plain
            "Explanation": card_obj.back.explanation or "",  # Should be plain
            "Example": card_obj.back.example or "",  # Should be plain
            "Prerequisites": prerequisites_str,
            "Learning_Outcomes": learning_outcomes_str,
            "Common_Misconceptions": common_misconceptions_str,
            "Difficulty": difficulty_str,
            "Source_URL": strip_html_tags(
                card_obj.metadata.get("source_url", "") if card_obj.metadata else ""
            ),
        }
        data_for_dataframe.append(card_dict)
    return data_for_dataframe