File size: 8,533 Bytes
56fd459 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# AnkiGen Agent System
A sophisticated multi-agent system for generating high-quality flashcards using specialized AI agents.
## Overview
The AnkiGen Agent System replaces the traditional single-LLM approach with a pipeline of specialized agents:
- **Generator Agents**: Create cards with domain expertise
- **Judge Agents**: Assess quality using multiple criteria
- **Enhancement Agents**: Improve and enrich card content
- **Coordinators**: Orchestrate workflows and handoffs
## Quick Start
### 1. Installation
```bash
pip install openai-agents pyyaml
```
### 2. Environment Configuration
Create a `.env` file or set environment variables:
```bash
# Basic agent mode
export ANKIGEN_AGENT_MODE=hybrid
# Enable specific agents
export ANKIGEN_ENABLE_SUBJECT_EXPERT=true
export ANKIGEN_ENABLE_CONTENT_JUDGE=true
export ANKIGEN_ENABLE_CLARITY_JUDGE=true
# Performance settings
export ANKIGEN_AGENT_TIMEOUT=30.0
export ANKIGEN_MIN_JUDGE_CONSENSUS=0.6
```
### 3. Usage
```python
from ankigen_core.agents.integration import AgentOrchestrator
from ankigen_core.llm_interface import OpenAIClientManager
# Initialize
client_manager = OpenAIClientManager()
orchestrator = AgentOrchestrator(client_manager)
await orchestrator.initialize("your-openai-api-key")
# Generate cards with agents
cards, metadata = await orchestrator.generate_cards_with_agents(
topic="Python Functions",
subject="programming",
num_cards=5,
difficulty="intermediate"
)
```
## Agent Types
### Generation Agents
#### SubjectExpertAgent
- **Purpose**: Domain-specific card generation
- **Specializes**: Technical accuracy, terminology, real-world applications
- **Configuration**: `ANKIGEN_ENABLE_SUBJECT_EXPERT=true`
#### PedagogicalAgent
- **Purpose**: Educational effectiveness review
- **Specializes**: Bloom's taxonomy, cognitive load, learning objectives
- **Configuration**: `ANKIGEN_ENABLE_PEDAGOGICAL_AGENT=true`
#### ContentStructuringAgent
- **Purpose**: Consistent formatting and organization
- **Specializes**: Metadata enrichment, standardization
- **Configuration**: `ANKIGEN_ENABLE_CONTENT_STRUCTURING=true`
#### GenerationCoordinator
- **Purpose**: Orchestrates multi-agent generation workflows
- **Configuration**: `ANKIGEN_ENABLE_GENERATION_COORDINATOR=true`
### Judge Agents
#### ContentAccuracyJudge
- **Evaluates**: Factual correctness, terminology, misconceptions
- **Model**: GPT-4o (high accuracy needed)
- **Configuration**: `ANKIGEN_ENABLE_CONTENT_JUDGE=true`
#### PedagogicalJudge
- **Evaluates**: Educational effectiveness, cognitive levels
- **Model**: GPT-4o
- **Configuration**: `ANKIGEN_ENABLE_PEDAGOGICAL_JUDGE=true`
#### ClarityJudge
- **Evaluates**: Communication clarity, readability
- **Model**: GPT-4o-mini (cost-effective)
- **Configuration**: `ANKIGEN_ENABLE_CLARITY_JUDGE=true`
#### TechnicalJudge
- **Evaluates**: Code syntax, best practices (technical content only)
- **Model**: GPT-4o
- **Configuration**: `ANKIGEN_ENABLE_TECHNICAL_JUDGE=true`
#### CompletenessJudge
- **Evaluates**: Required fields, metadata, quality standards
- **Model**: GPT-4o-mini
- **Configuration**: `ANKIGEN_ENABLE_COMPLETENESS_JUDGE=true`
### Enhancement Agents
#### RevisionAgent
- **Purpose**: Improves rejected cards based on judge feedback
- **Configuration**: `ANKIGEN_ENABLE_REVISION_AGENT=true`
#### EnhancementAgent
- **Purpose**: Adds missing content and enriches metadata
- **Configuration**: `ANKIGEN_ENABLE_ENHANCEMENT_AGENT=true`
## Operating Modes
### Legacy Mode
```bash
export ANKIGEN_AGENT_MODE=legacy
```
Uses the original single-LLM approach.
### Agent-Only Mode
```bash
export ANKIGEN_AGENT_MODE=agent_only
```
Forces use of agent system for all generation.
### Hybrid Mode
```bash
export ANKIGEN_AGENT_MODE=hybrid
```
Uses agents when enabled via feature flags, falls back to legacy otherwise.
### A/B Testing Mode
```bash
export ANKIGEN_AGENT_MODE=a_b_test
export ANKIGEN_AB_TEST_RATIO=0.5
```
Randomly assigns users to agent vs legacy generation for comparison.
## Configuration
### Agent Configuration Files
Agents can be configured via YAML files in `config/agents/`:
```yaml
# config/agents/defaults/generators.yaml
agents:
subject_expert:
instructions: "You are a world-class expert in {subject}..."
model: "gpt-4o"
temperature: 0.7
timeout: 45.0
custom_prompts:
math: "Focus on problem-solving strategies"
science: "Emphasize experimental design"
```
### Environment Variables
#### Agent Control
- `ANKIGEN_AGENT_MODE`: Operating mode (legacy/agent_only/hybrid/a_b_test)
- `ANKIGEN_ENABLE_*`: Enable specific agents (true/false)
#### Performance
- `ANKIGEN_AGENT_TIMEOUT`: Agent execution timeout (seconds)
- `ANKIGEN_MAX_AGENT_RETRIES`: Maximum retry attempts
- `ANKIGEN_ENABLE_AGENT_CACHING`: Enable response caching
#### Quality Control
- `ANKIGEN_MIN_JUDGE_CONSENSUS`: Minimum agreement between judges (0.0-1.0)
- `ANKIGEN_MAX_REVISION_ITERATIONS`: Maximum revision attempts
## Monitoring & Metrics
### Built-in Metrics
The system automatically tracks:
- Agent execution times and success rates
- Quality approval/rejection rates
- Token usage and costs
- Judge consensus scores
### Performance Dashboard
```python
orchestrator = AgentOrchestrator(client_manager)
metrics = orchestrator.get_performance_metrics()
print(f"24h Performance: {metrics['agent_performance']}")
print(f"Quality Metrics: {metrics['quality_metrics']}")
```
### Tracing
OpenAI Agents SDK provides built-in tracing UI for debugging workflows.
## Quality Pipeline
### Phase 1: Generation
1. Route to appropriate subject expert
2. Generate initial cards
3. Optional pedagogical review
4. Optional content structuring
### Phase 2: Quality Assessment
1. Route cards to relevant judges
2. Parallel evaluation by multiple specialists
3. Calculate consensus scores
4. Approve/reject based on thresholds
### Phase 3: Improvement
1. Revise rejected cards using judge feedback
2. Re-evaluate revised cards
3. Enhance approved cards with additional content
## Cost Optimization
### Model Selection
- **Generation**: GPT-4o for accuracy
- **Simple Judges**: GPT-4o-mini for cost efficiency
- **Critical Judges**: GPT-4o for quality
### Caching Strategy
- Response caching at agent level
- Shared cache across similar requests
- Configurable cache TTL
### Parallel Processing
- Judge agents run in parallel
- Batch processing for multiple cards
- Async execution throughout
## Migration Strategy
### Gradual Rollout
1. Start with single judge agent
2. Enable A/B testing
3. Gradually enable more agents
4. Monitor quality improvements
### Rollback Plan
- Keep legacy system as fallback
- Feature flags for quick disable
- Performance comparison dashboards
### Success Metrics
- 20%+ improvement in card quality scores
- Reduced manual editing needs
- Better user satisfaction ratings
- Maintained or improved generation speed
## Troubleshooting
### Common Issues
#### Agents Not Initializing
- Check OpenAI API key validity
- Verify agent mode configuration
- Check feature flag settings
#### Poor Quality Results
- Adjust judge consensus thresholds
- Enable more specialized judges
- Review agent configuration prompts
#### Performance Issues
- Enable caching
- Use parallel processing
- Optimize model selection
### Debug Mode
```bash
export ANKIGEN_ENABLE_AGENT_TRACING=true
```
Enables detailed logging and tracing UI for workflow debugging.
## Examples
### Basic Usage
```python
# Simple generation with agents
cards, metadata = await orchestrator.generate_cards_with_agents(
topic="Machine Learning",
subject="data_science",
num_cards=10
)
```
### Advanced Configuration
```python
# Custom enhancement targets
cards = await enhancement_agent.enhance_card_batch(
cards=cards,
enhancement_targets=["prerequisites", "learning_outcomes", "examples"]
)
```
### Quality Pipeline
```python
# Manual quality assessment
judge_results = await judge_coordinator.coordinate_judgment(
cards=cards,
enable_parallel=True,
min_consensus=0.8
)
```
## Contributing
### Adding New Agents
1. Inherit from `BaseAgentWrapper`
2. Add configuration in YAML files
3. Update feature flags
4. Add to coordinator workflows
### Testing
```bash
python -m pytest tests/unit/test_agents/
python -m pytest tests/integration/test_agent_workflows.py
```
## Support
For issues and questions:
- Check the troubleshooting guide
- Review agent tracing logs
- Monitor performance metrics
- Enable debug mode for detailed logging |