File size: 20,231 Bytes
56fd459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# Tests for ankigen_core/agents/generators.py

import pytest
import json
from unittest.mock import AsyncMock, MagicMock, patch
from datetime import datetime

from ankigen_core.agents.generators import SubjectExpertAgent, PedagogicalAgent
from ankigen_core.agents.base import AgentConfig
from ankigen_core.models import Card, CardFront, CardBack


# Test fixtures
@pytest.fixture
def mock_openai_client():
    """Mock OpenAI client for testing"""
    return MagicMock()


@pytest.fixture
def sample_card():
    """Sample card for testing"""
    return Card(
        card_type="basic",
        front=CardFront(question="What is Python?"),
        back=CardBack(
            answer="A programming language",
            explanation="Python is a high-level, interpreted programming language",
            example="print('Hello, World!')"
        ),
        metadata={
            "difficulty": "beginner",
            "subject": "programming",
            "topic": "Python Basics"
        }
    )


@pytest.fixture
def sample_cards_json():
    """Sample JSON response for card generation"""
    return {
        "cards": [
            {
                "card_type": "basic",
                "front": {
                    "question": "What is a Python function?"
                },
                "back": {
                    "answer": "A reusable block of code",
                    "explanation": "Functions help organize code into reusable components",
                    "example": "def hello(): print('hello')"
                },
                "metadata": {
                    "difficulty": "beginner",
                    "prerequisites": ["variables"],
                    "topic": "Functions",
                    "subject": "programming",
                    "learning_outcomes": ["understanding functions"],
                    "common_misconceptions": ["functions are variables"]
                }
            },
            {
                "card_type": "basic",
                "front": {
                    "question": "How do you define a function in Python?"
                },
                "back": {
                    "answer": "Using the 'def' keyword",
                    "explanation": "The 'def' keyword starts a function definition",
                    "example": "def my_function(): pass"
                },
                "metadata": {
                    "difficulty": "beginner",
                    "prerequisites": ["functions"],
                    "topic": "Functions",
                    "subject": "programming"
                }
            }
        ]
    }


# Test SubjectExpertAgent
@patch('ankigen_core.agents.generators.get_config_manager')
def test_subject_expert_agent_init_with_config(mock_get_config_manager, mock_openai_client):
    """Test SubjectExpertAgent initialization with existing config"""
    mock_config_manager = MagicMock()
    mock_config = AgentConfig(
        name="subject_expert",
        instructions="Test instructions",
        model="gpt-4o"
    )
    mock_config_manager.get_agent_config.return_value = mock_config
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = SubjectExpertAgent(mock_openai_client, subject="mathematics")
    
    assert agent.subject == "mathematics"
    assert agent.config == mock_config
    mock_config_manager.get_agent_config.assert_called_once_with("subject_expert")


@patch('ankigen_core.agents.generators.get_config_manager')
def test_subject_expert_agent_init_fallback_config(mock_get_config_manager, mock_openai_client):
    """Test SubjectExpertAgent initialization with fallback config"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None  # No config found
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = SubjectExpertAgent(mock_openai_client, subject="physics")
    
    assert agent.subject == "physics"
    assert agent.config.name == "subject_expert"
    assert "physics" in agent.config.instructions
    assert agent.config.model == "gpt-4o"


@patch('ankigen_core.agents.generators.get_config_manager')
def test_subject_expert_agent_init_with_custom_prompts(mock_get_config_manager, mock_openai_client):
    """Test SubjectExpertAgent initialization with custom prompts"""
    mock_config_manager = MagicMock()
    mock_config = AgentConfig(
        name="subject_expert",
        instructions="Base instructions",
        model="gpt-4o",
        custom_prompts={"mathematics": "Focus on mathematical rigor"}
    )
    mock_config_manager.get_agent_config.return_value = mock_config
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = SubjectExpertAgent(mock_openai_client, subject="mathematics")
    
    assert "Focus on mathematical rigor" in agent.config.instructions


def test_subject_expert_agent_build_generation_prompt():
    """Test building generation prompt"""
    with patch('ankigen_core.agents.generators.get_config_manager'):
        agent = SubjectExpertAgent(MagicMock(), subject="programming")
        
        prompt = agent._build_generation_prompt(
            topic="Python Functions",
            num_cards=3,
            difficulty="intermediate",
            prerequisites=["variables", "basic syntax"],
            context={"source_text": "Some source material about functions"}
        )
        
        assert "Python Functions" in prompt
        assert "3" in prompt
        assert "intermediate" in prompt
        assert "programming" in prompt
        assert "variables, basic syntax" in prompt
        assert "Some source material" in prompt


def test_subject_expert_agent_parse_cards_response_success(sample_cards_json):
    """Test successful card parsing"""
    with patch('ankigen_core.agents.generators.get_config_manager'):
        agent = SubjectExpertAgent(MagicMock(), subject="programming")
        
        # Test with JSON string
        json_string = json.dumps(sample_cards_json)
        cards = agent._parse_cards_response(json_string, "Functions")
        
        assert len(cards) == 2
        assert cards[0].front.question == "What is a Python function?"
        assert cards[0].back.answer == "A reusable block of code"
        assert cards[0].metadata["subject"] == "programming"
        assert cards[0].metadata["topic"] == "Functions"
        
        # Test with dict object
        cards = agent._parse_cards_response(sample_cards_json, "Functions")
        assert len(cards) == 2


def test_subject_expert_agent_parse_cards_response_invalid_json():
    """Test parsing invalid JSON response"""
    with patch('ankigen_core.agents.generators.get_config_manager'):
        agent = SubjectExpertAgent(MagicMock(), subject="programming")
        
        with pytest.raises(ValueError, match="Invalid JSON response"):
            agent._parse_cards_response("invalid json {", "topic")


def test_subject_expert_agent_parse_cards_response_missing_cards_field():
    """Test parsing response missing cards field"""
    with patch('ankigen_core.agents.generators.get_config_manager'):
        agent = SubjectExpertAgent(MagicMock(), subject="programming")
        
        invalid_response = {"wrong_field": []}
        with pytest.raises(ValueError, match="Response missing 'cards' field"):
            agent._parse_cards_response(invalid_response, "topic")


def test_subject_expert_agent_parse_cards_response_invalid_card_data():
    """Test parsing response with invalid card data"""
    with patch('ankigen_core.agents.generators.get_config_manager'):
        agent = SubjectExpertAgent(MagicMock(), subject="programming")
        
        invalid_cards = {
            "cards": [
                {
                    "front": {"question": "Valid question"},
                    "back": {"answer": "Valid answer"}
                },
                {
                    "front": {},  # Missing question
                    "back": {"answer": "Answer"}
                },
                {
                    "front": {"question": "Question"},
                    "back": {}  # Missing answer
                },
                "invalid_card_data"  # Not a dict
            ]
        }
        
        with patch('ankigen_core.logging.logger') as mock_logger:
            cards = agent._parse_cards_response(invalid_cards, "topic")
            
            # Should only get the valid card
            assert len(cards) == 1
            assert cards[0].front.question == "Valid question"
            
            # Should have logged warnings for invalid cards
            assert mock_logger.warning.call_count >= 3


@patch('ankigen_core.agents.generators.record_agent_execution')
@patch('ankigen_core.agents.generators.get_config_manager')
async def test_subject_expert_agent_generate_cards_success(mock_get_config_manager, mock_record, sample_cards_json, mock_openai_client):
    """Test successful card generation"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = SubjectExpertAgent(mock_openai_client, subject="programming")
    
    # Mock the execute method to return our sample response
    agent.execute = AsyncMock(return_value=json.dumps(sample_cards_json))
    
    cards = await agent.generate_cards(
        topic="Python Functions",
        num_cards=2,
        difficulty="beginner",
        prerequisites=["variables"],
        context={"source": "test"}
    )
    
    assert len(cards) == 2
    assert cards[0].front.question == "What is a Python function?"
    assert cards[0].metadata["subject"] == "programming"
    assert cards[0].metadata["topic"] == "Python Functions"
    
    # Verify execution was recorded
    mock_record.assert_called()
    assert mock_record.call_args[1]["success"] is True
    assert mock_record.call_args[1]["metadata"]["cards_generated"] == 2


@patch('ankigen_core.agents.generators.record_agent_execution')
@patch('ankigen_core.agents.generators.get_config_manager')
async def test_subject_expert_agent_generate_cards_error(mock_get_config_manager, mock_record, mock_openai_client):
    """Test card generation with error"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = SubjectExpertAgent(mock_openai_client, subject="programming")
    
    # Mock the execute method to raise an error
    agent.execute = AsyncMock(side_effect=Exception("Generation failed"))
    
    with pytest.raises(Exception, match="Generation failed"):
        await agent.generate_cards(topic="Test", num_cards=1)
    
    # Verify error was recorded
    mock_record.assert_called()
    assert mock_record.call_args[1]["success"] is False
    assert "Generation failed" in mock_record.call_args[1]["error_message"]


# Test PedagogicalAgent
@patch('ankigen_core.agents.generators.get_config_manager')
def test_pedagogical_agent_init_with_config(mock_get_config_manager, mock_openai_client):
    """Test PedagogicalAgent initialization with existing config"""
    mock_config_manager = MagicMock()
    mock_config = AgentConfig(
        name="pedagogical",
        instructions="Pedagogical instructions",
        model="gpt-4o"
    )
    mock_config_manager.get_agent_config.return_value = mock_config
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = PedagogicalAgent(mock_openai_client)
    
    assert agent.config == mock_config
    mock_config_manager.get_agent_config.assert_called_once_with("pedagogical")


@patch('ankigen_core.agents.generators.get_config_manager')
def test_pedagogical_agent_init_fallback_config(mock_get_config_manager, mock_openai_client):
    """Test PedagogicalAgent initialization with fallback config"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = PedagogicalAgent(mock_openai_client)
    
    assert agent.config.name == "pedagogical"
    assert "educational specialist" in agent.config.instructions.lower()
    assert agent.config.temperature == 0.6


@patch('ankigen_core.agents.generators.record_agent_execution')
@patch('ankigen_core.agents.generators.get_config_manager')
async def test_pedagogical_agent_review_cards_success(mock_get_config_manager, mock_record, mock_openai_client, sample_card):
    """Test successful card review"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = PedagogicalAgent(mock_openai_client)
    
    # Mock review response
    review_response = json.dumps({
        "pedagogical_quality": 8,
        "clarity": 9,
        "learning_effectiveness": 7,
        "suggestions": ["Add more examples"],
        "cognitive_load": "appropriate",
        "bloom_taxonomy_level": "application"
    })
    
    agent.execute = AsyncMock(return_value=review_response)
    
    reviews = await agent.review_cards([sample_card])
    
    assert len(reviews) == 1
    assert reviews[0]["pedagogical_quality"] == 8
    assert reviews[0]["clarity"] == 9
    assert "Add more examples" in reviews[0]["suggestions"]
    
    # Verify execution was recorded
    mock_record.assert_called()
    assert mock_record.call_args[1]["success"] is True


@patch('ankigen_core.agents.generators.get_config_manager')
def test_pedagogical_agent_build_review_prompt(mock_get_config_manager, mock_openai_client, sample_card):
    """Test building review prompt"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = PedagogicalAgent(mock_openai_client)
    
    prompt = agent._build_review_prompt(sample_card, 0)
    
    assert "What is Python?" in prompt
    assert "A programming language" in prompt
    assert "pedagogical quality" in prompt.lower()
    assert "bloom's taxonomy" in prompt.lower()
    assert "cognitive load" in prompt.lower()


@patch('ankigen_core.agents.generators.get_config_manager')
def test_pedagogical_agent_parse_review_response_success(mock_get_config_manager, mock_openai_client):
    """Test successful review response parsing"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = PedagogicalAgent(mock_openai_client)
    
    review_data = {
        "pedagogical_quality": 8,
        "clarity": 9,
        "learning_effectiveness": 7,
        "suggestions": ["Add more examples", "Improve explanation"],
        "cognitive_load": "appropriate",
        "bloom_taxonomy_level": "application"
    }
    
    # Test with JSON string
    result = agent._parse_review_response(json.dumps(review_data))
    assert result == review_data
    
    # Test with dict
    result = agent._parse_review_response(review_data)
    assert result == review_data


@patch('ankigen_core.agents.generators.get_config_manager')
def test_pedagogical_agent_parse_review_response_invalid_json(mock_get_config_manager, mock_openai_client):
    """Test parsing invalid review response"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = PedagogicalAgent(mock_openai_client)
    
    # Test invalid JSON
    with pytest.raises(ValueError, match="Invalid review response"):
        agent._parse_review_response("invalid json {")
    
    # Test response without required fields
    incomplete_response = {"pedagogical_quality": 8}  # Missing other required fields
    with pytest.raises(ValueError, match="Invalid review response"):
        agent._parse_review_response(incomplete_response)


@patch('ankigen_core.agents.generators.record_agent_execution')
@patch('ankigen_core.agents.generators.get_config_manager')
async def test_pedagogical_agent_review_cards_error(mock_get_config_manager, mock_record, mock_openai_client, sample_card):
    """Test card review with error"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = PedagogicalAgent(mock_openai_client)
    
    # Mock the execute method to raise an error
    agent.execute = AsyncMock(side_effect=Exception("Review failed"))
    
    with pytest.raises(Exception, match="Review failed"):
        await agent.review_cards([sample_card])
    
    # Verify error was recorded
    mock_record.assert_called()
    assert mock_record.call_args[1]["success"] is False


# Integration tests
@patch('ankigen_core.agents.generators.get_config_manager')
async def test_subject_expert_agent_end_to_end(mock_get_config_manager, mock_openai_client, sample_cards_json):
    """Test end-to-end SubjectExpertAgent workflow"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = SubjectExpertAgent(mock_openai_client, subject="programming")
    
    # Mock initialization and execution
    with patch.object(agent, 'initialize') as mock_init, \
         patch.object(agent, '_run_agent') as mock_run:
        
        mock_run.return_value = json.dumps(sample_cards_json)
        
        cards = await agent.generate_cards(
            topic="Python Functions",
            num_cards=2,
            difficulty="beginner",
            prerequisites=["variables"],
            context={"source_text": "Function tutorial content"}
        )
        
        # Verify results
        assert len(cards) == 2
        assert all(isinstance(card, Card) for card in cards)
        assert cards[0].front.question == "What is a Python function?"
        assert cards[0].metadata["subject"] == "programming"
        assert cards[0].metadata["topic"] == "Python Functions"
        
        # Verify agent was called correctly
        mock_init.assert_called_once()
        mock_run.assert_called_once()
        
        # Check that the prompt was built correctly
        call_args = mock_run.call_args[0][0]
        assert "Python Functions" in call_args
        assert "2" in call_args
        assert "beginner" in call_args
        assert "variables" in call_args
        assert "Function tutorial content" in call_args


@patch('ankigen_core.agents.generators.get_config_manager')
async def test_pedagogical_agent_end_to_end(mock_get_config_manager, mock_openai_client, sample_card):
    """Test end-to-end PedagogicalAgent workflow"""
    mock_config_manager = MagicMock()
    mock_config_manager.get_agent_config.return_value = None
    mock_get_config_manager.return_value = mock_config_manager
    
    agent = PedagogicalAgent(mock_openai_client)
    
    review_response = {
        "pedagogical_quality": 8,
        "clarity": 9,
        "learning_effectiveness": 7,
        "suggestions": ["Add more practical examples"],
        "cognitive_load": "appropriate",
        "bloom_taxonomy_level": "knowledge"
    }
    
    # Mock initialization and execution
    with patch.object(agent, 'initialize') as mock_init, \
         patch.object(agent, '_run_agent') as mock_run:
        
        mock_run.return_value = json.dumps(review_response)
        
        reviews = await agent.review_cards([sample_card])
        
        # Verify results
        assert len(reviews) == 1
        assert reviews[0]["pedagogical_quality"] == 8
        assert reviews[0]["clarity"] == 9
        assert "Add more practical examples" in reviews[0]["suggestions"]
        
        # Verify agent was called correctly
        mock_init.assert_called_once()
        mock_run.assert_called_once()
        
        # Check that the prompt was built correctly
        call_args = mock_run.call_args[0][0]
        assert sample_card.front.question in call_args
        assert sample_card.back.answer in call_args