File size: 17,932 Bytes
d09f6aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
# Tests for ankigen_core/card_generator.py
import pytest
from unittest.mock import patch, MagicMock, ANY
import pandas as pd
# Assuming Pydantic models, ResponseCache etc. are needed
from ankigen_core.models import Card, CardFront, CardBack
from ankigen_core.utils import ResponseCache
from ankigen_core.llm_interface import OpenAIClientManager # Needed for type hints
# Module to test
from ankigen_core import card_generator
from ankigen_core.card_generator import (
get_dataframe_columns,
) # Import for use in error returns
# --- Constants Tests (Optional but good practice) ---
def test_constants_exist_and_have_expected_type():
"""Test that constants exist and are lists."""
assert isinstance(card_generator.AVAILABLE_MODELS, list)
assert isinstance(card_generator.GENERATION_MODES, list)
assert len(card_generator.AVAILABLE_MODELS) > 0
assert len(card_generator.GENERATION_MODES) > 0
# --- generate_cards_batch Tests ---
@pytest.fixture
def mock_openai_client_fixture(): # Renamed to avoid conflict with llm_interface tests fixture
"""Provides a MagicMock OpenAI client."""
return MagicMock()
@pytest.fixture
def mock_response_cache_fixture():
"""Provides a MagicMock ResponseCache."""
cache = MagicMock(spec=ResponseCache)
cache.get.return_value = None # Default to cache miss
return cache
@patch("ankigen_core.card_generator.structured_output_completion")
def test_generate_cards_batch_success(
mock_soc, mock_openai_client_fixture, mock_response_cache_fixture
):
"""Test successful card generation using generate_cards_batch."""
mock_openai_client = mock_openai_client_fixture
mock_response_cache = mock_response_cache_fixture
model = "gpt-test"
topic = "Test Topic"
num_cards = 2
system_prompt = "System prompt"
generate_cloze = False
# Mock the response from structured_output_completion
mock_soc.return_value = {
"cards": [
{
"card_type": "basic",
"front": {"question": "Q1"},
"back": {"answer": "A1", "explanation": "E1", "example": "Ex1"},
"metadata": {"difficulty": "beginner"},
},
{
"card_type": "cloze",
"front": {"question": "{{c1::Q2}}"},
"back": {"answer": "A2_full", "explanation": "E2", "example": "Ex2"},
"metadata": {"difficulty": "intermediate"},
},
]
}
result_cards = card_generator.generate_cards_batch(
openai_client=mock_openai_client,
cache=mock_response_cache,
model=model,
topic=topic,
num_cards=num_cards,
system_prompt=system_prompt,
generate_cloze=generate_cloze,
)
assert len(result_cards) == 2
assert isinstance(result_cards[0], Card)
assert result_cards[0].card_type == "basic"
assert result_cards[0].front.question == "Q1"
assert result_cards[1].card_type == "cloze"
assert result_cards[1].front.question == "{{c1::Q2}}"
assert result_cards[1].metadata["difficulty"] == "intermediate"
mock_soc.assert_called_once()
call_args = mock_soc.call_args[1] # Get keyword args
assert call_args["openai_client"] == mock_openai_client
assert call_args["cache"] == mock_response_cache
assert call_args["model"] == model
assert call_args["system_prompt"] == system_prompt
assert topic in call_args["user_prompt"]
assert str(num_cards) in call_args["user_prompt"]
# Check cloze instruction is NOT present
assert "generate Cloze deletion cards" not in call_args["user_prompt"]
@patch("ankigen_core.card_generator.structured_output_completion")
def test_generate_cards_batch_cloze_prompt(
mock_soc, mock_openai_client_fixture, mock_response_cache_fixture
):
"""Test generate_cards_batch includes cloze instructions when requested."""
mock_openai_client = mock_openai_client_fixture
mock_response_cache = mock_response_cache_fixture
mock_soc.return_value = {"cards": []} # Return empty for simplicity
card_generator.generate_cards_batch(
openai_client=mock_openai_client,
cache=mock_response_cache,
model="gpt-test",
topic="Cloze Topic",
num_cards=1,
system_prompt="System",
generate_cloze=True,
)
mock_soc.assert_called_once()
call_args = mock_soc.call_args[1]
# Check that specific cloze instructions are present
assert "generate Cloze deletion cards" in call_args["user_prompt"]
# Corrected check: Look for instruction text, not the JSON example syntax
assert (
"Format the question field using Anki's cloze syntax"
in call_args["user_prompt"]
)
@patch("ankigen_core.card_generator.structured_output_completion")
def test_generate_cards_batch_api_error(
mock_soc, mock_openai_client_fixture, mock_response_cache_fixture
):
"""Test generate_cards_batch handles API errors by re-raising."""
mock_openai_client = mock_openai_client_fixture
mock_response_cache = mock_response_cache_fixture
error_message = "API Error"
mock_soc.side_effect = ValueError(error_message) # Simulate error from SOC
with pytest.raises(ValueError, match=error_message):
card_generator.generate_cards_batch(
openai_client=mock_openai_client,
cache=mock_response_cache,
model="gpt-test",
topic="Error Topic",
num_cards=1,
system_prompt="System",
generate_cloze=False,
)
@patch("ankigen_core.card_generator.structured_output_completion")
def test_generate_cards_batch_invalid_response(
mock_soc, mock_openai_client_fixture, mock_response_cache_fixture
):
"""Test generate_cards_batch handles invalid JSON or missing keys."""
mock_openai_client = mock_openai_client_fixture
mock_response_cache = mock_response_cache_fixture
mock_soc.return_value = {"wrong_key": []} # Missing 'cards' key
with pytest.raises(ValueError, match="Failed to generate cards"):
card_generator.generate_cards_batch(
openai_client=mock_openai_client,
cache=mock_response_cache,
model="gpt-test",
topic="Invalid Response Topic",
num_cards=1,
system_prompt="System",
generate_cloze=False,
)
# --- orchestrate_card_generation Tests ---
@pytest.fixture
def mock_client_manager_fixture():
"""Provides a MagicMock OpenAIClientManager."""
manager = MagicMock(spec=OpenAIClientManager)
mock_client = MagicMock() # Mock the client instance it returns
manager.get_client.return_value = mock_client
# Simulate successful initialization by default
manager.initialize_client.return_value = None
return manager, mock_client
def base_orchestrator_args(api_key="valid_key", **kwargs):
"""Base arguments for orchestrate_card_generation."""
base_args = {
"api_key_input": api_key,
"subject": "Subject",
"generation_mode": "subject", # Default mode
"source_text": "Source text",
"url_input": "http://example.com",
"model_name": "gpt-test",
"topic_number": 1, # Corresponds to num_cards in generate_cards_batch
"cards_per_topic": 5, # Corresponds to num_cards in generate_cards_batch
"preference_prompt": "Pref prompt", # Corresponds to system_prompt
"generate_cloze": False,
}
base_args.update(kwargs) # Update with any provided kwargs
return base_args
@patch("ankigen_core.card_generator.structured_output_completion")
@patch("ankigen_core.card_generator.generate_cards_batch")
def test_orchestrate_subject_mode(
mock_gcb, mock_soc, mock_client_manager_fixture, mock_response_cache_fixture
):
"""Test orchestrate_card_generation in 'subject' mode."""
manager, client = mock_client_manager_fixture
cache = mock_response_cache_fixture
args = base_orchestrator_args(generation_mode="subject")
# Mock the first SOC call (for topics)
mock_soc.return_value = {
"topics": [
{"name": "Topic 1", "difficulty": "beginner", "description": "Desc 1"}
]
}
# Mock return value from generate_cards_batch (called inside loop)
mock_gcb.return_value = [
Card(
front=CardFront(question="Q1"),
back=CardBack(answer="A1", explanation="E1", example="Ex1"),
)
]
# Patch gr.Info/Warning
with patch("gradio.Info"), patch("gradio.Warning"):
df_result, status, count = card_generator.orchestrate_card_generation(
client_manager=manager, cache=cache, **args
)
manager.initialize_client.assert_called_once_with(args["api_key_input"])
manager.get_client.assert_called_once()
# Check SOC call for topics
mock_soc.assert_called_once()
soc_call_args = mock_soc.call_args[1]
assert soc_call_args["openai_client"] == client
assert "Generate the top" in soc_call_args["user_prompt"]
assert args["subject"] in soc_call_args["user_prompt"]
# Check GCB call for the generated topic
mock_gcb.assert_called_once_with(
openai_client=client,
cache=cache,
model=args["model_name"],
topic="Topic 1", # Topic name from mock_soc response
num_cards=args["cards_per_topic"],
system_prompt=ANY, # System prompt is constructed internally
generate_cloze=args["generate_cloze"],
)
assert count == 1
assert isinstance(df_result, pd.DataFrame)
assert len(df_result) == 1
assert df_result.iloc[0]["Question"] == "Q1"
# Correct assertion to check for the returned HTML string (ignoring precise whitespace)
assert "Generation complete!" in status
assert "Total cards generated: 1" in status
assert "<div" in status # Basic check for HTML structure
# expected_html_status = '''
# <div style="text-align: center">
# <p>✅ Generation complete!</p>
# <p>Total cards generated: 1</p>
# </div>
# '''
# assert status.strip() == expected_html_status.strip()
@patch("ankigen_core.card_generator.structured_output_completion")
@patch("ankigen_core.card_generator.generate_cards_batch")
def test_orchestrate_text_mode(
mock_gcb, mock_soc, mock_client_manager_fixture, mock_response_cache_fixture
):
"""Test orchestrate_card_generation in 'text' mode."""
manager, client = mock_client_manager_fixture
cache = mock_response_cache_fixture
args = base_orchestrator_args(generation_mode="text")
mock_soc.return_value = {"cards": []}
card_generator.orchestrate_card_generation(
client_manager=manager, cache=cache, **args
)
mock_soc.assert_called_once()
call_args = mock_soc.call_args[1]
assert args["source_text"] in call_args["user_prompt"]
@patch("ankigen_core.card_generator.fetch_webpage_text")
@patch("ankigen_core.card_generator.structured_output_completion")
def test_orchestrate_web_mode(
mock_soc, mock_fetch, mock_client_manager_fixture, mock_response_cache_fixture
):
"""Test orchestrate_card_generation in 'web' mode."""
manager, client = mock_client_manager_fixture
cache = mock_response_cache_fixture
args = base_orchestrator_args(generation_mode="web")
fetched_text = "This is the fetched web page text."
mock_fetch.return_value = fetched_text
mock_soc.return_value = {
"cards": []
} # Mock successful SOC call returning empty cards
# Mock gr.Info and gr.Warning to avoid Gradio UI calls during test
# Removed the incorrect pytest.raises and mock_gr_warning patch from here
with patch("gradio.Info"), patch("gradio.Warning"):
card_generator.orchestrate_card_generation(
client_manager=manager, cache=cache, **args
)
mock_fetch.assert_called_once_with(args["url_input"])
mock_soc.assert_called_once()
call_args = mock_soc.call_args[1]
assert fetched_text in call_args["user_prompt"]
@patch("ankigen_core.card_generator.fetch_webpage_text")
@patch(
"ankigen_core.card_generator.gr.Error"
) # Mock gr.Error used by orchestrate_card_generation
def test_orchestrate_web_mode_fetch_error(
mock_gr_error, mock_fetch, mock_client_manager_fixture, mock_response_cache_fixture
):
"""Test 'web' mode handles errors during webpage fetching by calling gr.Error."""
manager, _ = mock_client_manager_fixture
cache = mock_response_cache_fixture
args = base_orchestrator_args(generation_mode="web")
error_msg = "Connection timed out"
mock_fetch.side_effect = ConnectionError(error_msg)
with patch("gradio.Info"), patch("gradio.Warning"):
df, status_msg, count = card_generator.orchestrate_card_generation(
client_manager=manager, cache=cache, **args
)
mock_gr_error.assert_called_once_with(
f"Failed to get content from URL: {error_msg}"
)
assert isinstance(df, pd.DataFrame)
assert df.empty
assert df.columns.tolist() == get_dataframe_columns()
assert status_msg == "Failed to get content from URL."
assert count == 0
@patch("ankigen_core.card_generator.structured_output_completion") # Patch SOC
@patch("ankigen_core.card_generator.generate_cards_batch")
def test_orchestrate_generation_batch_error(
mock_gcb, mock_soc, mock_client_manager_fixture, mock_response_cache_fixture
):
"""Test orchestrator handles errors from generate_cards_batch."""
manager, client = mock_client_manager_fixture
cache = mock_response_cache_fixture
args = base_orchestrator_args(generation_mode="subject")
error_msg = "LLM generation failed" # Define error_msg here
# Mock the first SOC call (for topics) - needs to succeed
mock_soc.return_value = {
"topics": [
{"name": "Topic 1", "difficulty": "beginner", "description": "Desc 1"}
]
}
# Configure GCB to raise an error
mock_gcb.side_effect = ValueError(error_msg)
# Patch gr.Info/Warning and assert Warning is called
# Removed pytest.raises
with patch("gradio.Info"), patch("gradio.Warning") as mock_gr_warning:
# Add the call to the function back in
card_generator.orchestrate_card_generation(
client_manager=manager, cache=cache, **args
)
# Assert that the warning was called due to the GCB error
mock_gr_warning.assert_called_with(
"Failed to generate cards for 'Topic 1'. Skipping."
)
mock_soc.assert_called_once() # Ensure topic generation was attempted
mock_gcb.assert_called_once() # Ensure card generation was attempted
@patch("ankigen_core.card_generator.gr.Error")
def test_orchestrate_path_mode_raises_not_implemented(
mock_gr_error, mock_client_manager_fixture, mock_response_cache_fixture
):
"""Test 'path' mode calls gr.Error for being unsupported."""
manager, _ = mock_client_manager_fixture
cache = mock_response_cache_fixture
args = base_orchestrator_args(generation_mode="path")
df, status_msg, count = card_generator.orchestrate_card_generation(
client_manager=manager, cache=cache, **args
)
mock_gr_error.assert_called_once_with("Unsupported generation mode selected: path")
assert isinstance(df, pd.DataFrame)
assert df.empty
assert df.columns.tolist() == get_dataframe_columns()
assert status_msg == "Unsupported mode."
assert count == 0
@patch("ankigen_core.card_generator.gr.Error")
def test_orchestrate_invalid_mode_raises_value_error(
mock_gr_error, mock_client_manager_fixture, mock_response_cache_fixture
):
"""Test invalid mode calls gr.Error."""
manager, _ = mock_client_manager_fixture
cache = mock_response_cache_fixture
args = base_orchestrator_args(generation_mode="invalid_mode")
df, status_msg, count = card_generator.orchestrate_card_generation(
client_manager=manager, cache=cache, **args
)
mock_gr_error.assert_called_once_with(
"Unsupported generation mode selected: invalid_mode"
)
assert isinstance(df, pd.DataFrame)
assert df.empty
assert df.columns.tolist() == get_dataframe_columns()
assert status_msg == "Unsupported mode."
assert count == 0
@patch("ankigen_core.card_generator.gr.Error")
def test_orchestrate_no_api_key_raises_error(
mock_gr_error, mock_client_manager_fixture, mock_response_cache_fixture
):
"""Test orchestrator calls gr.Error if API key is missing."""
manager, _ = mock_client_manager_fixture
cache = mock_response_cache_fixture
args = base_orchestrator_args(api_key="") # Empty API key
df, status_msg, count = card_generator.orchestrate_card_generation(
client_manager=manager, cache=cache, **args
)
mock_gr_error.assert_called_once_with("OpenAI API key is required")
assert isinstance(df, pd.DataFrame)
assert df.empty
assert df.columns.tolist() == get_dataframe_columns()
assert status_msg == "API key is required."
assert count == 0
@patch("ankigen_core.card_generator.gr.Error")
def test_orchestrate_client_init_error_raises_error(
mock_gr_error, mock_client_manager_fixture, mock_response_cache_fixture
):
"""Test orchestrator calls gr.Error if client initialization fails."""
manager, _ = mock_client_manager_fixture
cache = mock_response_cache_fixture
args = base_orchestrator_args()
error_msg = "Invalid API Key"
manager.initialize_client.side_effect = ValueError(error_msg)
df, status_msg, count = card_generator.orchestrate_card_generation(
client_manager=manager, cache=cache, **args
)
mock_gr_error.assert_called_once_with(f"OpenAI Client Error: {error_msg}")
assert isinstance(df, pd.DataFrame)
assert df.empty
assert df.columns.tolist() == get_dataframe_columns()
assert status_msg == f"OpenAI Client Error: {error_msg}"
assert count == 0
|