File size: 17,932 Bytes
d09f6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# Tests for ankigen_core/card_generator.py
import pytest
from unittest.mock import patch, MagicMock, ANY
import pandas as pd

# Assuming Pydantic models, ResponseCache etc. are needed
from ankigen_core.models import Card, CardFront, CardBack
from ankigen_core.utils import ResponseCache
from ankigen_core.llm_interface import OpenAIClientManager  # Needed for type hints

# Module to test
from ankigen_core import card_generator
from ankigen_core.card_generator import (
    get_dataframe_columns,
)  # Import for use in error returns

# --- Constants Tests (Optional but good practice) ---


def test_constants_exist_and_have_expected_type():
    """Test that constants exist and are lists."""
    assert isinstance(card_generator.AVAILABLE_MODELS, list)
    assert isinstance(card_generator.GENERATION_MODES, list)
    assert len(card_generator.AVAILABLE_MODELS) > 0
    assert len(card_generator.GENERATION_MODES) > 0


# --- generate_cards_batch Tests ---


@pytest.fixture
def mock_openai_client_fixture():  # Renamed to avoid conflict with llm_interface tests fixture
    """Provides a MagicMock OpenAI client."""
    return MagicMock()


@pytest.fixture
def mock_response_cache_fixture():
    """Provides a MagicMock ResponseCache."""
    cache = MagicMock(spec=ResponseCache)
    cache.get.return_value = None  # Default to cache miss
    return cache


@patch("ankigen_core.card_generator.structured_output_completion")
def test_generate_cards_batch_success(
    mock_soc, mock_openai_client_fixture, mock_response_cache_fixture
):
    """Test successful card generation using generate_cards_batch."""
    mock_openai_client = mock_openai_client_fixture
    mock_response_cache = mock_response_cache_fixture
    model = "gpt-test"
    topic = "Test Topic"
    num_cards = 2
    system_prompt = "System prompt"
    generate_cloze = False

    # Mock the response from structured_output_completion
    mock_soc.return_value = {
        "cards": [
            {
                "card_type": "basic",
                "front": {"question": "Q1"},
                "back": {"answer": "A1", "explanation": "E1", "example": "Ex1"},
                "metadata": {"difficulty": "beginner"},
            },
            {
                "card_type": "cloze",
                "front": {"question": "{{c1::Q2}}"},
                "back": {"answer": "A2_full", "explanation": "E2", "example": "Ex2"},
                "metadata": {"difficulty": "intermediate"},
            },
        ]
    }

    result_cards = card_generator.generate_cards_batch(
        openai_client=mock_openai_client,
        cache=mock_response_cache,
        model=model,
        topic=topic,
        num_cards=num_cards,
        system_prompt=system_prompt,
        generate_cloze=generate_cloze,
    )

    assert len(result_cards) == 2
    assert isinstance(result_cards[0], Card)
    assert result_cards[0].card_type == "basic"
    assert result_cards[0].front.question == "Q1"
    assert result_cards[1].card_type == "cloze"
    assert result_cards[1].front.question == "{{c1::Q2}}"
    assert result_cards[1].metadata["difficulty"] == "intermediate"

    mock_soc.assert_called_once()
    call_args = mock_soc.call_args[1]  # Get keyword args
    assert call_args["openai_client"] == mock_openai_client
    assert call_args["cache"] == mock_response_cache
    assert call_args["model"] == model
    assert call_args["system_prompt"] == system_prompt
    assert topic in call_args["user_prompt"]
    assert str(num_cards) in call_args["user_prompt"]
    # Check cloze instruction is NOT present
    assert "generate Cloze deletion cards" not in call_args["user_prompt"]


@patch("ankigen_core.card_generator.structured_output_completion")
def test_generate_cards_batch_cloze_prompt(
    mock_soc, mock_openai_client_fixture, mock_response_cache_fixture
):
    """Test generate_cards_batch includes cloze instructions when requested."""
    mock_openai_client = mock_openai_client_fixture
    mock_response_cache = mock_response_cache_fixture
    mock_soc.return_value = {"cards": []}  # Return empty for simplicity

    card_generator.generate_cards_batch(
        openai_client=mock_openai_client,
        cache=mock_response_cache,
        model="gpt-test",
        topic="Cloze Topic",
        num_cards=1,
        system_prompt="System",
        generate_cloze=True,
    )

    mock_soc.assert_called_once()
    call_args = mock_soc.call_args[1]
    # Check that specific cloze instructions are present
    assert "generate Cloze deletion cards" in call_args["user_prompt"]
    # Corrected check: Look for instruction text, not the JSON example syntax
    assert (
        "Format the question field using Anki's cloze syntax"
        in call_args["user_prompt"]
    )


@patch("ankigen_core.card_generator.structured_output_completion")
def test_generate_cards_batch_api_error(
    mock_soc, mock_openai_client_fixture, mock_response_cache_fixture
):
    """Test generate_cards_batch handles API errors by re-raising."""
    mock_openai_client = mock_openai_client_fixture
    mock_response_cache = mock_response_cache_fixture
    error_message = "API Error"
    mock_soc.side_effect = ValueError(error_message)  # Simulate error from SOC

    with pytest.raises(ValueError, match=error_message):
        card_generator.generate_cards_batch(
            openai_client=mock_openai_client,
            cache=mock_response_cache,
            model="gpt-test",
            topic="Error Topic",
            num_cards=1,
            system_prompt="System",
            generate_cloze=False,
        )


@patch("ankigen_core.card_generator.structured_output_completion")
def test_generate_cards_batch_invalid_response(
    mock_soc, mock_openai_client_fixture, mock_response_cache_fixture
):
    """Test generate_cards_batch handles invalid JSON or missing keys."""
    mock_openai_client = mock_openai_client_fixture
    mock_response_cache = mock_response_cache_fixture
    mock_soc.return_value = {"wrong_key": []}  # Missing 'cards' key

    with pytest.raises(ValueError, match="Failed to generate cards"):
        card_generator.generate_cards_batch(
            openai_client=mock_openai_client,
            cache=mock_response_cache,
            model="gpt-test",
            topic="Invalid Response Topic",
            num_cards=1,
            system_prompt="System",
            generate_cloze=False,
        )


# --- orchestrate_card_generation Tests ---


@pytest.fixture
def mock_client_manager_fixture():
    """Provides a MagicMock OpenAIClientManager."""
    manager = MagicMock(spec=OpenAIClientManager)
    mock_client = MagicMock()  # Mock the client instance it returns
    manager.get_client.return_value = mock_client
    # Simulate successful initialization by default
    manager.initialize_client.return_value = None
    return manager, mock_client


def base_orchestrator_args(api_key="valid_key", **kwargs):
    """Base arguments for orchestrate_card_generation."""
    base_args = {
        "api_key_input": api_key,
        "subject": "Subject",
        "generation_mode": "subject",  # Default mode
        "source_text": "Source text",
        "url_input": "http://example.com",
        "model_name": "gpt-test",
        "topic_number": 1,  # Corresponds to num_cards in generate_cards_batch
        "cards_per_topic": 5,  # Corresponds to num_cards in generate_cards_batch
        "preference_prompt": "Pref prompt",  # Corresponds to system_prompt
        "generate_cloze": False,
    }
    base_args.update(kwargs)  # Update with any provided kwargs
    return base_args


@patch("ankigen_core.card_generator.structured_output_completion")
@patch("ankigen_core.card_generator.generate_cards_batch")
def test_orchestrate_subject_mode(
    mock_gcb, mock_soc, mock_client_manager_fixture, mock_response_cache_fixture
):
    """Test orchestrate_card_generation in 'subject' mode."""
    manager, client = mock_client_manager_fixture
    cache = mock_response_cache_fixture
    args = base_orchestrator_args(generation_mode="subject")

    # Mock the first SOC call (for topics)
    mock_soc.return_value = {
        "topics": [
            {"name": "Topic 1", "difficulty": "beginner", "description": "Desc 1"}
        ]
    }

    # Mock return value from generate_cards_batch (called inside loop)
    mock_gcb.return_value = [
        Card(
            front=CardFront(question="Q1"),
            back=CardBack(answer="A1", explanation="E1", example="Ex1"),
        )
    ]

    # Patch gr.Info/Warning
    with patch("gradio.Info"), patch("gradio.Warning"):
        df_result, status, count = card_generator.orchestrate_card_generation(
            client_manager=manager, cache=cache, **args
        )

    manager.initialize_client.assert_called_once_with(args["api_key_input"])
    manager.get_client.assert_called_once()

    # Check SOC call for topics
    mock_soc.assert_called_once()
    soc_call_args = mock_soc.call_args[1]
    assert soc_call_args["openai_client"] == client
    assert "Generate the top" in soc_call_args["user_prompt"]
    assert args["subject"] in soc_call_args["user_prompt"]

    # Check GCB call for the generated topic
    mock_gcb.assert_called_once_with(
        openai_client=client,
        cache=cache,
        model=args["model_name"],
        topic="Topic 1",  # Topic name from mock_soc response
        num_cards=args["cards_per_topic"],
        system_prompt=ANY,  # System prompt is constructed internally
        generate_cloze=args["generate_cloze"],
    )
    assert count == 1
    assert isinstance(df_result, pd.DataFrame)
    assert len(df_result) == 1
    assert df_result.iloc[0]["Question"] == "Q1"
    # Correct assertion to check for the returned HTML string (ignoring precise whitespace)
    assert "Generation complete!" in status
    assert "Total cards generated: 1" in status
    assert "<div" in status  # Basic check for HTML structure
    # expected_html_status = '''
    # <div style="text-align: center">
    #     <p>✅ Generation complete!</p>
    #     <p>Total cards generated: 1</p>
    # </div>
    # '''
    # assert status.strip() == expected_html_status.strip()


@patch("ankigen_core.card_generator.structured_output_completion")
@patch("ankigen_core.card_generator.generate_cards_batch")
def test_orchestrate_text_mode(
    mock_gcb, mock_soc, mock_client_manager_fixture, mock_response_cache_fixture
):
    """Test orchestrate_card_generation in 'text' mode."""
    manager, client = mock_client_manager_fixture
    cache = mock_response_cache_fixture
    args = base_orchestrator_args(generation_mode="text")
    mock_soc.return_value = {"cards": []}

    card_generator.orchestrate_card_generation(
        client_manager=manager, cache=cache, **args
    )

    mock_soc.assert_called_once()
    call_args = mock_soc.call_args[1]
    assert args["source_text"] in call_args["user_prompt"]


@patch("ankigen_core.card_generator.fetch_webpage_text")
@patch("ankigen_core.card_generator.structured_output_completion")
def test_orchestrate_web_mode(
    mock_soc, mock_fetch, mock_client_manager_fixture, mock_response_cache_fixture
):
    """Test orchestrate_card_generation in 'web' mode."""
    manager, client = mock_client_manager_fixture
    cache = mock_response_cache_fixture
    args = base_orchestrator_args(generation_mode="web")

    fetched_text = "This is the fetched web page text."
    mock_fetch.return_value = fetched_text
    mock_soc.return_value = {
        "cards": []
    }  # Mock successful SOC call returning empty cards

    # Mock gr.Info and gr.Warning to avoid Gradio UI calls during test
    # Removed the incorrect pytest.raises and mock_gr_warning patch from here
    with patch("gradio.Info"), patch("gradio.Warning"):
        card_generator.orchestrate_card_generation(
            client_manager=manager, cache=cache, **args
        )

    mock_fetch.assert_called_once_with(args["url_input"])
    mock_soc.assert_called_once()
    call_args = mock_soc.call_args[1]
    assert fetched_text in call_args["user_prompt"]


@patch("ankigen_core.card_generator.fetch_webpage_text")
@patch(
    "ankigen_core.card_generator.gr.Error"
)  # Mock gr.Error used by orchestrate_card_generation
def test_orchestrate_web_mode_fetch_error(
    mock_gr_error, mock_fetch, mock_client_manager_fixture, mock_response_cache_fixture
):
    """Test 'web' mode handles errors during webpage fetching by calling gr.Error."""
    manager, _ = mock_client_manager_fixture
    cache = mock_response_cache_fixture
    args = base_orchestrator_args(generation_mode="web")
    error_msg = "Connection timed out"
    mock_fetch.side_effect = ConnectionError(error_msg)

    with patch("gradio.Info"), patch("gradio.Warning"):
        df, status_msg, count = card_generator.orchestrate_card_generation(
            client_manager=manager, cache=cache, **args
        )

    mock_gr_error.assert_called_once_with(
        f"Failed to get content from URL: {error_msg}"
    )
    assert isinstance(df, pd.DataFrame)
    assert df.empty
    assert df.columns.tolist() == get_dataframe_columns()
    assert status_msg == "Failed to get content from URL."
    assert count == 0


@patch("ankigen_core.card_generator.structured_output_completion")  # Patch SOC
@patch("ankigen_core.card_generator.generate_cards_batch")
def test_orchestrate_generation_batch_error(
    mock_gcb, mock_soc, mock_client_manager_fixture, mock_response_cache_fixture
):
    """Test orchestrator handles errors from generate_cards_batch."""
    manager, client = mock_client_manager_fixture
    cache = mock_response_cache_fixture
    args = base_orchestrator_args(generation_mode="subject")
    error_msg = "LLM generation failed"  # Define error_msg here

    # Mock the first SOC call (for topics) - needs to succeed
    mock_soc.return_value = {
        "topics": [
            {"name": "Topic 1", "difficulty": "beginner", "description": "Desc 1"}
        ]
    }

    # Configure GCB to raise an error
    mock_gcb.side_effect = ValueError(error_msg)

    # Patch gr.Info/Warning and assert Warning is called
    # Removed pytest.raises
    with patch("gradio.Info"), patch("gradio.Warning") as mock_gr_warning:
        # Add the call to the function back in
        card_generator.orchestrate_card_generation(
            client_manager=manager, cache=cache, **args
        )

    # Assert that the warning was called due to the GCB error
    mock_gr_warning.assert_called_with(
        "Failed to generate cards for 'Topic 1'. Skipping."
    )

    mock_soc.assert_called_once()  # Ensure topic generation was attempted
    mock_gcb.assert_called_once()  # Ensure card generation was attempted


@patch("ankigen_core.card_generator.gr.Error")
def test_orchestrate_path_mode_raises_not_implemented(
    mock_gr_error, mock_client_manager_fixture, mock_response_cache_fixture
):
    """Test 'path' mode calls gr.Error for being unsupported."""
    manager, _ = mock_client_manager_fixture
    cache = mock_response_cache_fixture
    args = base_orchestrator_args(generation_mode="path")

    df, status_msg, count = card_generator.orchestrate_card_generation(
        client_manager=manager, cache=cache, **args
    )

    mock_gr_error.assert_called_once_with("Unsupported generation mode selected: path")
    assert isinstance(df, pd.DataFrame)
    assert df.empty
    assert df.columns.tolist() == get_dataframe_columns()
    assert status_msg == "Unsupported mode."
    assert count == 0


@patch("ankigen_core.card_generator.gr.Error")
def test_orchestrate_invalid_mode_raises_value_error(
    mock_gr_error, mock_client_manager_fixture, mock_response_cache_fixture
):
    """Test invalid mode calls gr.Error."""
    manager, _ = mock_client_manager_fixture
    cache = mock_response_cache_fixture
    args = base_orchestrator_args(generation_mode="invalid_mode")

    df, status_msg, count = card_generator.orchestrate_card_generation(
        client_manager=manager, cache=cache, **args
    )

    mock_gr_error.assert_called_once_with(
        "Unsupported generation mode selected: invalid_mode"
    )
    assert isinstance(df, pd.DataFrame)
    assert df.empty
    assert df.columns.tolist() == get_dataframe_columns()
    assert status_msg == "Unsupported mode."
    assert count == 0


@patch("ankigen_core.card_generator.gr.Error")
def test_orchestrate_no_api_key_raises_error(
    mock_gr_error, mock_client_manager_fixture, mock_response_cache_fixture
):
    """Test orchestrator calls gr.Error if API key is missing."""
    manager, _ = mock_client_manager_fixture
    cache = mock_response_cache_fixture
    args = base_orchestrator_args(api_key="")  # Empty API key

    df, status_msg, count = card_generator.orchestrate_card_generation(
        client_manager=manager, cache=cache, **args
    )

    mock_gr_error.assert_called_once_with("OpenAI API key is required")
    assert isinstance(df, pd.DataFrame)
    assert df.empty
    assert df.columns.tolist() == get_dataframe_columns()
    assert status_msg == "API key is required."
    assert count == 0


@patch("ankigen_core.card_generator.gr.Error")
def test_orchestrate_client_init_error_raises_error(
    mock_gr_error, mock_client_manager_fixture, mock_response_cache_fixture
):
    """Test orchestrator calls gr.Error if client initialization fails."""
    manager, _ = mock_client_manager_fixture
    cache = mock_response_cache_fixture
    args = base_orchestrator_args()
    error_msg = "Invalid API Key"
    manager.initialize_client.side_effect = ValueError(error_msg)

    df, status_msg, count = card_generator.orchestrate_card_generation(
        client_manager=manager, cache=cache, **args
    )

    mock_gr_error.assert_called_once_with(f"OpenAI Client Error: {error_msg}")
    assert isinstance(df, pd.DataFrame)
    assert df.empty
    assert df.columns.tolist() == get_dataframe_columns()
    assert status_msg == f"OpenAI Client Error: {error_msg}"
    assert count == 0