# AnkiGen Agent System Configuration | |
# Copy this file to .env and modify as needed | |
# ===================================== | |
# AGENT OPERATING MODE | |
# ===================================== | |
# Main operating mode: legacy, agent_only, hybrid, a_b_test | |
ANKIGEN_AGENT_MODE=hybrid | |
# A/B testing configuration (only used when mode=a_b_test) | |
ANKIGEN_AB_TEST_RATIO=0.5 | |
ANKIGEN_AB_TEST_USER_HASH= | |
# ===================================== | |
# GENERATION AGENTS | |
# ===================================== | |
# Subject Expert Agent - domain-specific card generation | |
ANKIGEN_ENABLE_SUBJECT_EXPERT=true | |
# Pedagogical Agent - educational effectiveness review | |
ANKIGEN_ENABLE_PEDAGOGICAL_AGENT=false | |
# Content Structuring Agent - formatting and organization | |
ANKIGEN_ENABLE_CONTENT_STRUCTURING=false | |
# Generation Coordinator - orchestrates multi-agent workflows | |
ANKIGEN_ENABLE_GENERATION_COORDINATOR=false | |
# ===================================== | |
# JUDGE AGENTS | |
# ===================================== | |
# Content Accuracy Judge - fact-checking and accuracy | |
ANKIGEN_ENABLE_CONTENT_JUDGE=true | |
# Pedagogical Judge - educational effectiveness | |
ANKIGEN_ENABLE_PEDAGOGICAL_JUDGE=false | |
# Clarity Judge - communication and readability | |
ANKIGEN_ENABLE_CLARITY_JUDGE=false | |
# Technical Judge - code and technical content | |
ANKIGEN_ENABLE_TECHNICAL_JUDGE=false | |
# Completeness Judge - quality standards and completeness | |
ANKIGEN_ENABLE_COMPLETENESS_JUDGE=false | |
# Judge Coordinator - orchestrates multi-judge workflows | |
ANKIGEN_ENABLE_JUDGE_COORDINATOR=false | |
# ===================================== | |
# ENHANCEMENT AGENTS | |
# ===================================== | |
# Revision Agent - improves rejected cards | |
ANKIGEN_ENABLE_REVISION_AGENT=false | |
# Enhancement Agent - enriches content and metadata | |
ANKIGEN_ENABLE_ENHANCEMENT_AGENT=false | |
# ===================================== | |
# WORKFLOW FEATURES | |
# ===================================== | |
# Multi-agent generation workflows | |
ANKIGEN_ENABLE_MULTI_AGENT_GEN=false | |
# Parallel judge execution | |
ANKIGEN_ENABLE_PARALLEL_JUDGING=true | |
# Agent handoff capabilities | |
ANKIGEN_ENABLE_AGENT_HANDOFFS=false | |
# Agent tracing and debugging | |
ANKIGEN_ENABLE_AGENT_TRACING=true | |
# ===================================== | |
# PERFORMANCE SETTINGS | |
# ===================================== | |
# Agent execution timeout (seconds) | |
ANKIGEN_AGENT_TIMEOUT=30.0 | |
# Maximum retry attempts for failed agents | |
ANKIGEN_MAX_AGENT_RETRIES=3 | |
# Enable response caching for efficiency | |
ANKIGEN_ENABLE_AGENT_CACHING=true | |
# ===================================== | |
# QUALITY CONTROL | |
# ===================================== | |
# Minimum judge consensus for card approval (0.0-1.0) | |
ANKIGEN_MIN_JUDGE_CONSENSUS=0.6 | |
# Maximum revision iterations for rejected cards | |
ANKIGEN_MAX_REVISION_ITERATIONS=3 | |
# ===================================== | |
# PRESET CONFIGURATIONS | |
# ===================================== | |
# Uncomment one of these preset configurations: | |
# MINIMAL SETUP - Single subject expert + content judge | |
# ANKIGEN_AGENT_MODE=hybrid | |
# ANKIGEN_ENABLE_SUBJECT_EXPERT=true | |
# ANKIGEN_ENABLE_CONTENT_JUDGE=true | |
# ANKIGEN_ENABLE_AGENT_TRACING=true | |
# QUALITY FOCUSED - Full judge pipeline | |
# ANKIGEN_AGENT_MODE=hybrid | |
# ANKIGEN_ENABLE_SUBJECT_EXPERT=true | |
# ANKIGEN_ENABLE_CONTENT_JUDGE=true | |
# ANKIGEN_ENABLE_PEDAGOGICAL_JUDGE=true | |
# ANKIGEN_ENABLE_CLARITY_JUDGE=true | |
# ANKIGEN_ENABLE_COMPLETENESS_JUDGE=true | |
# ANKIGEN_ENABLE_JUDGE_COORDINATOR=true | |
# ANKIGEN_ENABLE_PARALLEL_JUDGING=true | |
# ANKIGEN_MIN_JUDGE_CONSENSUS=0.7 | |
# FULL PIPELINE - All agents enabled | |
# ANKIGEN_AGENT_MODE=agent_only | |
# ANKIGEN_ENABLE_SUBJECT_EXPERT=true | |
# ANKIGEN_ENABLE_PEDAGOGICAL_AGENT=true | |
# ANKIGEN_ENABLE_CONTENT_STRUCTURING=true | |
# ANKIGEN_ENABLE_GENERATION_COORDINATOR=true | |
# ANKIGEN_ENABLE_CONTENT_JUDGE=true | |
# ANKIGEN_ENABLE_PEDAGOGICAL_JUDGE=true | |
# ANKIGEN_ENABLE_CLARITY_JUDGE=true | |
# ANKIGEN_ENABLE_TECHNICAL_JUDGE=true | |
# ANKIGEN_ENABLE_COMPLETENESS_JUDGE=true | |
# ANKIGEN_ENABLE_JUDGE_COORDINATOR=true | |
# ANKIGEN_ENABLE_REVISION_AGENT=true | |
# ANKIGEN_ENABLE_ENHANCEMENT_AGENT=true | |
# ANKIGEN_ENABLE_PARALLEL_JUDGING=true | |
# ANKIGEN_ENABLE_AGENT_HANDOFFS=true | |
# A/B TESTING SETUP - Compare agents vs legacy | |
# ANKIGEN_AGENT_MODE=a_b_test | |
# ANKIGEN_AB_TEST_RATIO=0.5 | |
# ANKIGEN_ENABLE_SUBJECT_EXPERT=true | |
# ANKIGEN_ENABLE_CONTENT_JUDGE=true | |
# ANKIGEN_ENABLE_AGENT_TRACING=true | |
# ===================================== | |
# MONITORING & DEBUGGING | |
# ===================================== | |
# Agent metrics persistence directory | |
# ANKIGEN_METRICS_DIR=metrics/agents | |
# Agent configuration directory | |
# ANKIGEN_CONFIG_DIR=config/agents | |
# Enable detailed debug logging | |
# ANKIGEN_DEBUG_MODE=false | |
# ===================================== | |
# COST OPTIMIZATION | |
# ===================================== | |
# Model preferences for different agent types | |
# ANKIGEN_GENERATION_MODEL=gpt-4o | |
# ANKIGEN_JUDGE_MODEL=gpt-4o-mini | |
# ANKIGEN_CRITICAL_JUDGE_MODEL=gpt-4o | |
# Token usage limits per request | |
# ANKIGEN_MAX_INPUT_TOKENS=4000 | |
# ANKIGEN_MAX_OUTPUT_TOKENS=2000 | |
# ===================================== | |
# NOTES | |
# ===================================== | |
# Performance Impact: | |
# - Each enabled agent adds processing time and cost | |
# - Parallel judging reduces latency but increases concurrent API calls | |
# - Caching significantly improves performance for similar requests | |
# Quality vs Speed: | |
# - More judges = better quality but slower generation | |
# - Agent coordination adds overhead but improves consistency | |
# - Enhancement agents provide best quality but highest cost | |
# Recommended Starting Configuration: | |
# 1. Start with hybrid mode + subject expert + content judge | |
# 2. Enable A/B testing to compare with legacy system | |
# 3. Gradually add more agents based on quality needs | |
# 4. Monitor metrics and adjust consensus thresholds | |
# Cost Considerations: | |
# - Subject Expert: ~2-3x cost of legacy (higher quality) | |
# - Judge Pipeline: ~1.5-2x additional cost (significant quality improvement) | |
# - Enhancement Pipeline: ~1.2-1.5x additional cost (marginal improvement) | |
# - Full pipeline: ~4-6x cost of legacy (maximum quality) |