Upload folder using huggingface_hub
Browse files- ankigen_core/agents/enhancers.py +2 -2
- ankigen_core/agents/judges.py +6 -6
- app.py +0 -7
ankigen_core/agents/enhancers.py
CHANGED
@@ -54,7 +54,7 @@ class RevisionAgent(BaseAgentWrapper):
|
|
54 |
)
|
55 |
|
56 |
# Execute revision
|
57 |
-
response = await self.execute(user_input)
|
58 |
|
59 |
# Parse revised card
|
60 |
revised_card = self._parse_revised_card(response, card)
|
@@ -188,7 +188,7 @@ class EnhancementAgent(BaseAgentWrapper):
|
|
188 |
user_input = self._build_enhancement_prompt(card, enhancement_targets)
|
189 |
|
190 |
# Execute enhancement
|
191 |
-
response = await self.execute(user_input)
|
192 |
|
193 |
# Parse enhanced card
|
194 |
enhanced_card = self._parse_enhanced_card(response, card)
|
|
|
54 |
)
|
55 |
|
56 |
# Execute revision
|
57 |
+
response, usage = await self.execute(user_input)
|
58 |
|
59 |
# Parse revised card
|
60 |
revised_card = self._parse_revised_card(response, card)
|
|
|
188 |
user_input = self._build_enhancement_prompt(card, enhancement_targets)
|
189 |
|
190 |
# Execute enhancement
|
191 |
+
response, usage = await self.execute(user_input)
|
192 |
|
193 |
# Parse enhanced card
|
194 |
enhanced_card = self._parse_enhanced_card(response, card)
|
ankigen_core/agents/judges.py
CHANGED
@@ -57,8 +57,8 @@ class ContentAccuracyJudge(BaseAgentWrapper):
|
|
57 |
try:
|
58 |
user_input = f"""Evaluate this flashcard for factual accuracy:
|
59 |
|
60 |
-
Front: {card.front.
|
61 |
-
Back: {card.back.
|
62 |
|
63 |
Assess:
|
64 |
1. Factual correctness
|
@@ -153,7 +153,7 @@ cognitive levels, and educational best practices.""",
|
|
153 |
|
154 |
try:
|
155 |
user_input = self._build_judgment_prompt(card)
|
156 |
-
response = await self.execute(user_input)
|
157 |
|
158 |
decision_data = (
|
159 |
json.loads(response) if isinstance(response, str) else response
|
@@ -263,7 +263,7 @@ to the target audience.""",
|
|
263 |
|
264 |
try:
|
265 |
user_input = self._build_judgment_prompt(card)
|
266 |
-
response = await self.execute(user_input)
|
267 |
|
268 |
decision_data = (
|
269 |
json.loads(response) if isinstance(response, str) else response
|
@@ -378,7 +378,7 @@ Verify code syntax, best practices, security considerations, and technical corre
|
|
378 |
)
|
379 |
|
380 |
user_input = self._build_judgment_prompt(card)
|
381 |
-
response = await self.execute(user_input)
|
382 |
|
383 |
decision_data = (
|
384 |
json.loads(response) if isinstance(response, str) else response
|
@@ -504,7 +504,7 @@ and maintain consistent quality standards.""",
|
|
504 |
|
505 |
try:
|
506 |
user_input = self._build_judgment_prompt(card)
|
507 |
-
response = await self.execute(user_input)
|
508 |
|
509 |
decision_data = (
|
510 |
json.loads(response) if isinstance(response, str) else response
|
|
|
57 |
try:
|
58 |
user_input = f"""Evaluate this flashcard for factual accuracy:
|
59 |
|
60 |
+
Front: {card.front.question}
|
61 |
+
Back: {card.back.answer}
|
62 |
|
63 |
Assess:
|
64 |
1. Factual correctness
|
|
|
153 |
|
154 |
try:
|
155 |
user_input = self._build_judgment_prompt(card)
|
156 |
+
response, usage = await self.execute(user_input)
|
157 |
|
158 |
decision_data = (
|
159 |
json.loads(response) if isinstance(response, str) else response
|
|
|
263 |
|
264 |
try:
|
265 |
user_input = self._build_judgment_prompt(card)
|
266 |
+
response, usage = await self.execute(user_input)
|
267 |
|
268 |
decision_data = (
|
269 |
json.loads(response) if isinstance(response, str) else response
|
|
|
378 |
)
|
379 |
|
380 |
user_input = self._build_judgment_prompt(card)
|
381 |
+
response, usage = await self.execute(user_input)
|
382 |
|
383 |
decision_data = (
|
384 |
json.loads(response) if isinstance(response, str) else response
|
|
|
504 |
|
505 |
try:
|
506 |
user_input = self._build_judgment_prompt(card)
|
507 |
+
response, usage = await self.execute(user_input)
|
508 |
|
509 |
decision_data = (
|
510 |
json.loads(response) if isinstance(response, str) else response
|
app.py
CHANGED
@@ -306,10 +306,6 @@ def create_ankigen_interface():
|
|
306 |
label="Generate Cloze Cards (Experimental)",
|
307 |
value=False,
|
308 |
)
|
309 |
-
llm_judge_checkbox = gr.Checkbox(
|
310 |
-
label="Use LLM Judge",
|
311 |
-
value=False,
|
312 |
-
)
|
313 |
|
314 |
# Agent System Controls (simplified since we're agent-only)
|
315 |
if AGENTS_AVAILABLE_APP:
|
@@ -666,7 +662,6 @@ def create_ankigen_interface():
|
|
666 |
cards_per_topic_val,
|
667 |
preference_prompt_val,
|
668 |
generate_cloze_checkbox_val,
|
669 |
-
llm_judge_checkbox_val,
|
670 |
agent_mode_val,
|
671 |
enable_subject_expert_val,
|
672 |
enable_generation_coordinator_val,
|
@@ -774,7 +769,6 @@ def create_ankigen_interface():
|
|
774 |
cards_per_topic_val,
|
775 |
preference_prompt_val,
|
776 |
generate_cloze_checkbox_val,
|
777 |
-
llm_judge_checkbox_val,
|
778 |
)
|
779 |
# Expect 3-tuple return (dataframe, total_cards_html, token_usage_html)
|
780 |
|
@@ -791,7 +785,6 @@ def create_ankigen_interface():
|
|
791 |
cards_per_topic,
|
792 |
preference_prompt,
|
793 |
generate_cloze_checkbox,
|
794 |
-
llm_judge_checkbox,
|
795 |
agent_mode_dropdown,
|
796 |
enable_subject_expert,
|
797 |
enable_generation_coordinator,
|
|
|
306 |
label="Generate Cloze Cards (Experimental)",
|
307 |
value=False,
|
308 |
)
|
|
|
|
|
|
|
|
|
309 |
|
310 |
# Agent System Controls (simplified since we're agent-only)
|
311 |
if AGENTS_AVAILABLE_APP:
|
|
|
662 |
cards_per_topic_val,
|
663 |
preference_prompt_val,
|
664 |
generate_cloze_checkbox_val,
|
|
|
665 |
agent_mode_val,
|
666 |
enable_subject_expert_val,
|
667 |
enable_generation_coordinator_val,
|
|
|
769 |
cards_per_topic_val,
|
770 |
preference_prompt_val,
|
771 |
generate_cloze_checkbox_val,
|
|
|
772 |
)
|
773 |
# Expect 3-tuple return (dataframe, total_cards_html, token_usage_html)
|
774 |
|
|
|
785 |
cards_per_topic,
|
786 |
preference_prompt,
|
787 |
generate_cloze_checkbox,
|
|
|
788 |
agent_mode_dropdown,
|
789 |
enable_subject_expert,
|
790 |
enable_generation_coordinator,
|